
Submodular Set Functions and Monotone Systems in Aggregation Problems. II * 

I. B. Muchnik and L. V. Shavartser UDC 62-506.1 
A relationship from Part I between submodular functions and functions determining extremal 
properties of monotone systems is applied to prove that, on the chain of any set-theoretical in-
terval, the submodular function varies more slowly than the linear function of the cardinality 
of ordered sets. Branch-and-bound algorithms are developed for unconstrained and con-
strained extremization with optimal tree traversal. Applying the apparatus of combinatorial 
optimization of submodular functions solves some standard examples of aggregation of em-
pirical data. 

1. Introduction 

In this article, which is a continuation of [1], we investigate the relationship between 

submodular functions and monotone systems in the context of minimization of submodular 

functions. Unlike the maximization problems considered in Part I, minimization of submodu-

lar functions requires utilizing the extremal properties of the associated monotone systems. 

Yet the overall construction for the minimization of submodular functions is entirely similar 

to the maximization construction. 

In Sec. 2, we consider a unified minimum-seeking scheme for the global minimum and 

for minima under inequality and equality constrains. Sec. 3 discusses some applied topics 

associated with the general methods from both parts of the paper for aggregation of large ar-

rays of empirical data. Taking one aggregation problem as an example, we show how the 

minimization of a general (not submodular) function can be reduces to sequential minimiza-

tion of submodular functions on sets of fixed-cardinality subsets. 

The proofs are collected in the Appendix. 

                                                           
*  Moscow. Translated from Avtomatica i Telemekhanika, No. 6, pp. 138 – 147, June, 1987. Original article 

submitted June 4, 1986. 
  005 – 1179/87/4805 – 0821 $12.50   1987 Plenum Publishing Corporation. 821 
  We alert the readers’ obligation with respect to copyrighted material. 



  
2 

2. Extremal Properties of the Derivative for Minimization of submodular Functions 

Consider the following problems: 
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where W  is a finite set, k , N  natural numbers, NW = , )H(P  is a submodular function on 

W2 -set of subsets of W . 

The problem (1) is remarkable in that it has a polynomial-time algorithm [2] if )H(P  is 

an integer-valued function with 0=∅ )(P . For the special case of finding a cut in a graph, 

this is a flow algorithm [3]. Yet efficient use of the general polynomial algorithms for the 

problem (1) has been insufficiently studied in [2], and the problem of finding new effective 

algorithms (possibly heuristic) remains quite topical. This is even more valid for the prob-

lems (2)-(4), since to the best of our knowledge no polynomial algorithms have been pro-

posed so far for their solution. 

The branch-and-bound algorithms proposed below for minimization of )H(P  in problem 

(1) are logically as simple as the algorithms for the maximization of this function in problem 

(I.10), described in Part I [1].1 They are also probably as efficient, since they are entirely 

analogous to the maximization algorithms. 

The algorithms for the solution of problem (I.10) rely on some general properties of the 

derivatives of submodular functions – the expansion (I.6) and the inequalities (I.7). The algo-

rithms for the solution of problem (1), on the other hand, utilize some special (extremal) 

properties of these derivatives. 

The algorithms for the solution of problem (1) are in effect based on the reversal of three 

rejection rules used during the branching of the solution tree in [1]. 
                                                           
1 The notation (I.10) is a reference to formula (10) in Part I [1]. This notation is used throughout. 
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Definition. A point of local minimum of the function )H(P  is the subset WH ⊆° , such 

that 
 0≤° )H,i(π  °∈∀ Hi , 

 { } 0≥∪° )iH,i(   π  °∈∀ HWi \ . 

Let ]B,A[  be some set-theoretical interval ( )WBA ⊆⊆  and ]B,A[H ∈° . 

Reversal of first rejection rule. If ABi \∈  and 0>)B,i(π , then °∉ Hi , i.e., 

{ } ]iB,A[H   \∈°  perform right-reduction of the intervals. 

Proof of the reversal of the first rejection rule. Let ]B,A[Hi ∈°∈ . Noting that 

0>)B,i(π  and using (I.7), we again obtain a contradiction with the definition of the set °H  

as a point of local minimum. 

Reversal of second rejection rule. If ABi \∈  and { } 0<∪ )iA,i(   π  then °∈ Hi  

{ }( ]B,iA[H    ∪∈°  perform left-reduction of the interval ) . 

Proof of the reversal of the second rejection rule. Let ]B,A[Hi ∈°∉ . Noting that 

{ } { }    iHiA ∪°⊆∪  and using (I.7), we again obtain a contradiction, which proves that 

°∈ Hi . 

It is easily seen that if °H , ]B,A[H ∈°  ( °H  is a local maximum of )H(P  [1] ) , then 

those and only those elements, which are rejected “from the right” by the minimum-seeking 

procedure retained “from the left” by maximum-seeking procedure, while those and only 

those elements, which are retained “from the left” by minimum-seeking procedure are re-

jected “from the right” by the maximum-seeking procedure. 

These two rules lead to a branch-and-bound algorithm for the problem (1), which is simi-

lar to Cherenin’s algorithm 2 for the solution of the problem (I.10). However, in this case, 
when the algorithm hits a local minimum (a node ]B,A[  such that either °= HA  or °= HB  

), this does not necessarily guarantee direct transition to a leaf. Therefore, two rejection rules 

in no way reduce the path from local minimum to a leaf, and it is essential to supplement this 

algorithm with bounds of the type (I.14) and (I.15). 

                                                           
2 Concerning the branch-and-bound scheme (and in particular, Cherenin’s algorithm), see [1]. 
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In addition to the monotone system F,,B π  generated 3 by function )H(P , BH ⊆ , we 

also introduce an auxiliary system 'F,',AB π\ , 

 )AH,i()H,i(' ∪=ππ  ( )ABH \⊆∀   Hi ∈∀  . (5) 

If ABJ \  is an order on AB\ , and { }ABAB J \\  =Ω  is the set of all orders on AB\ , then the 

function )H,J(' AB\Π , ABH \⊆  is defined by the system F,',AB π\  according to (I.3): 

)H,i(')H,J('
ABJAB \\ πΠ = , where 

ABJi \  is the first element of the set H  in the sequence 

ABJ \ . 

We also introduce 

 )H,J(')J,B,A(F~ ABABHAB \\\ Π min
⊆

= , (6) 

 ( ) )J,B,A(F~At)A(P)J,B,A(P~ ABABt \\ ⋅−+=  , (7) 

 )H,J(')B,A(F ABJABH ABAB
\\ \\

Π
Ω

 max   min
∈⊆

= , (8) 

 ( ) )B,A(F~At)A(P)B,A(P~t ⋅−+=  , Bt ≤ . (9) 

Theorem 1. 1.) The quantities (7) for various ABABJ \\ Ω∈  form the class of lower bounds 

on )H(P  for any ]B,A[H ∈ , tH = . 2.) When the reversal of the first rejection rule is in-

applicable to the interval ]B,A[ , the quantities (7) with Bt =  for various ABABJ \\ Ω∈  form 

the class of lower bounds on )H(P  for any ]B,A[H ∈ . 3.) For any fixed t  such that 

Bt ≤ , the quantity (9) is an unimprovable bound in the class of bounds )J,B,A(P~ ABt \ , 

ABABJ \\ Ω∈ , defined by (7). 4.) The algorithm evaluating bounds (9) runs in time 

)AB( 22\Ο . 

Theorem 1 provides lower bounds upon )H(P  on fixed-cardinality subsets in the form 

 ( ) )B,A(F~kB)B(P)H(P ⋅−−≤ , 

which, in particular, constitutes an immediate improvement of (I.12). 

The theorem provides the basis for the following branch-and-bound algorithm solving the 

problem (1). 

                                                           
3 In the sense of definition (I.5). 
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Solution tree. The standard branching scheme is used, 

 { } { } ]iB,A[]B,A[]B,iA[      \→←∪ , 

where ABi \∈ ; the initial interval is ]W,[ ∅ ; the best value so far is ( ))B(P),A(Pminr  = . 

Note that the branch-and-bound strategy [4] chooses the element i  so that it produces the 

maximum possible increment of the bound in the course of downward motion trough the so-

lution tree. In this case, such choice is indeed feasible. 

Let ( )'G A
B    be the maximum-cardinality core of the monotone system 'F,',AB π\ . Let 

{ }( )'G A
iB     \  and { }( )'G iA

B     ∪  denote the corresponding maximum-cardinality cores of monotone 

systems on the intervals { } ]iB,A[     \  and { } ]B,iA[    ∪ . 

Theorem 2. 1.) Let ( ) ( )'GABi A
B   \\∈ . Then the bound )B,A(P~t  (with t fixed) is not in-

creasing on passing to the node { } ]iB,A[     \ . 2.) Let ( )'Gi A
B   ∈ . Then the bound )B,A(P~t  

( t  fixed) may only increase on passing to the node { } ]iB,A[     \ . 3.) Let i  be the last ele-

ment of the maximum defining sequence of the monotone system 'F,',AB π\  ( ( )'Gi A
B   ∈ ). 

Then the bound )B,A(P~t  ( t  fixed) may only increase on passing to the node { } ]B,iA[    ∪ . 

The first two propositions of Theorem 2 show that the choice of the element i  from the 

core ( )'G A
B    for current reduction of the interval is preferred to the choice of any other ele-

ment from the complement ( ) ( )'GAB A
B   \\ . The third proposition identifies a unique core 

element as the best. 

Choice of initial value. In the initial step, the best value should be chosen as the least 

value obtained by executing the following three procedures. 

Procedure 1. Find the “greedy” solution for Nk =  and evaluate )H(P  on its comple-

ment. This procedure is based on the analogy between the rejection rules and their reversals, 

and also on the closeness of the greedy solution to the maximum. 
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Procedure 2. Apply the greedy procedure to the function )H(P  (see [1]) and take the 

value )H(P  on this solution. This procedure is based on the symmetry of the function 

)H(P  and )HW(P)H(P \= . 

Procedure 3. Continue constructing the maximum defining sequence until )H,i( kkπ  is 

less than zero. This procedure is based on the analogy (“reversibility”) of the greedy se-

quence and the maximum defining sequence (the greedy procedure extends the sequence, 

while the maximum defining sequence is truncated by maximum )H,i( kkπ . 

Note that if )H(P  is a monotone function, we can apply these heuristics so as to choose 

only subsets of maximum cardinality k . 

Traversal of the solution tree is performed as in the algorithm of [1] (reversing the ine-

qualities and evaluating minima instead of maxima). 

Since the algorithm for the problem (I.11) and (I.12) is a modification of the algorithm 

for the problem (I.10), the algorithms for the problems (2) and (3) are also constructed as a 

similar modification of the algorithm for the problem (1). The scheme of solution of the 

problem (4) is symmetrical to the scheme of solution of the problem (I.13) with the necessary 

changes in the branching procedure. 

3. Application of the Algorithms in Aggregation Problems 

All the examples considered in this section reduce the aggregation problem to the solu-

tion of the problem (4). 

Some of these problems are reducible to global minimization of nonsubmodular functions 

from the class 

 )H()H(P)H()H(P βα +⋅=~ , 

where )H(P  is a submodular function, )x(α , )x(β  are arbitrary real functions, WH ⊆ . 
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Seeing that the solution subsets of the problems 
NkH

min)H(P
≤=

→~  and 
NkH

min)H(P
≤=

→  

coincide, global minimization of the function )H(P~  can be performed by enumeration of 

its values on the solutions of the problem (4) for all N,k 1= . 

Following the usual practice of aggregation problems [5], we will use “object-feature” 

and “object-object” (or “feature-feature”) matrices as the input. 

Let X  ( nX = ) be the set of objects, Y  ( mY = ) the set of features (parameters); 
j

iϕΦ  = , n,i 1= , m,j 1=  the “object-feature” matrix, iϕ  the i -th row and jϕ  the j -th 

column of the matrix Φ . 

Let W  ( NW = ) be the set of elements such that either XW =  or YW = , and 
M,j

M,ijiaA
1

1

=

=
=   the matrix of pair association coefficients between the elements of this set. 

1°. Minimization of the Rank Function of a Matrix Matroid. One of the central problems 

of factor analysis is to isolate a subspace of strongly associated (in some sense) feature [5]; in 

regression analysis, the corresponding problem is to select subspaces of features, which are 

maximally correlated with a designated output feature [6]. Problems of this kind can be for-

mulated as follows in terms of submodular functions. 

Let ( )F,Y  be a matrix matroid, where Y  is the set of features – the columns of the matrix 

Φ , F  the set of linearly independent subsets of the set Y . We know [4] that in this case the 

rank function )H(r  ( YH ⊆ ) is the rank of the submatrix HΦ  of the matrix Φ . Then the 

problem to find H  such that 

 
kH

)H(r
=

→min , 

precisely defines the subspace, which allows “maxima” reduction of dimensionality (for a 

fixed number k  of input features). 

Now, in addition to Φ , we have the column vector z  ( nzdim = ). Consider the function 
)z,(rank)H('r HΦ= , where ( )z,HΦ  is a { })H(n 1+×  matrix formed by combining the 

submatrix HΦ  with the column z . In this case, the solution of the problem 

 
kH

)H('r
=

→ min  
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isolates a k -element subset of the input features that are maximally correlated with the out-

put feature 4 z . Therefore, the regression equation should be constructed on the system 

( )*H,z , where *H  is the solution of the last problem. 5 

2°. Formation of Elementary Propositions (selection of homogeneous submatrices) in 

Linguistic Analysis of Data Matrices [7]. This problem is central in various methods of lin-

guistic analysis [5,7], which however only consider crudely approximate algorithms for its 

solution. In terms of extremization of a supermodular function, this problem can be stated as 

follows. 

Let Φ  be a data matrix with nonnegative elements. 

Let ( ) { }  , ,   YHXHHHHHY,XB ⊆⊆∪== 2121 . On ( )Y,XB  define the function 

 ∑
∈
∈

=

2
1

Hj
Hi

j
i)H(P ϕ . 

This function is obviously supermodular. The solution of the problem 

 
kH

)H(P
=

→max  

is a submatrix with total number of rows and columns equal to k ; this submatrix is homoge-

nous in the sense that all its elements have relatively large (and therefore close) values. Suc-

cessive extraction of such submatrices from the matrix Φ  until the latter is exhausted gener-

ates a linguistic description of the matrix (i.e., a system of elementary propositions, which 

characterize the qualitative distribution of the empirical data in Φ ). 

                                                           
4 Note that the functions )H(r  and )H('r  are monotone ( )'H(r)H(rH'H ≥⇒⊆ , and similarly for 

)H('r ), so that we can choose the initial best value as suggested in Sec. 2. Moreover, since the problems 
(3) and (4) in this case have the same solution, the interval analyzing algorithm may use the reversals of the 
rejection rules in addition to the bound (9). 

5 As shown in [8], the monotonicity property of the set functions )H(P  in itself is sufficient in order to pose 

and effectively solve the problem of finding all the so-called V -extrema – WH * ⊆  such that 

V)H(P * >  and *HH ⊂∀  , V)H(P * ≤ , where V  is a prespecified number. It is easily seen [8] that 
this problem also can be interpreted as the problem of selecting a “defining” regression subspace. 
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3°. Aggregation Using the Association Matrix. Let jiaA  =  j,i ∀ , 0≥jia  . Consider the 

following two set functions, 

 ∑
∈

=
Hj,i

jia)H(P  1 , ∑
∈
∈

=

Hj
Hi

jia)H(P  2 , 

where WH ⊆ , ∅≠H , HWH \= , and 021 =∅=∅ )(P)(P . 

The function )H(P1  is clearly supermodular and )H(P2  is submodular [9]. From this 

pair of functions, we can construct the following parametric family of functions 6 : 

 )H(Pt)H(P)H(P t 21 ⋅+⋅= !! , WH ⊆ , ℜ∈t,! . (10) 

Theorem 3. For !⋅> 2t , the function )H(P t !  is supermodular, and for !⋅< 2t , it is 

submodular; for !⋅= 2t  it is modular. 

The family of functions (10) opens wide horizons for the construction of various aggrega-

tion problems. Let us consider four examples with integer parameters !  and t . 

Example 1. We use the following method for selecting the set of class “centers” in auto-

matic classification of objects into a given number k  of classes. Let 1=!  and 0=t . Then 

)H(P)H(P t 1= ! . 

For a fixed number of classes k , the set of class “centers” is the set *H  obtained by solv-

ing the problem 

 
kH

)H(P
=

→max1 . (11) 

Noting that ( ))H(P1−  is a submodular function, this solution can be obtained by the 

minimization algorithm (4) described in Sec. 2. 7 

                                                           
6 This family of functions is generated, according to Theorem I.3, from the family of monotone systems 

∑∑
∈∈
⋅+⋅=

Hj
ji

Hj
ji ata)H,i(t    !!π  with constant derivative. 

7 Note that the function )H(P1  is antitone (i.e., ( ) ( ))H(P)'H(PH'H 11 −≤−⇒⊆  and therefore the 

problem of finding V -extrema [8] of the function )H(P1  is similar of the problem (11) if we consider it 

with the constraint kH = . 
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Example 2. Now consider the automatic classification problem of objects with the matrix 

A  into an unspecified number of classes. In this case, the set of “centers” of the sought clas-

sification is the set WH * ⊆ , obtained by solving the problem 8 

 ∑
∈
∈ ⊂

→⋅=

Hj
Hi WHjia

H
)H(P max 

1
3 . 

Clearly, although )H(P3  is not supermodular, the solution is obtained by enumeration 9 

of the solutions of the problem (11) for all N,k 2= . 

Example 3. The problem of finding the centroid component reduces [1] to maximizing 

the functional 

 ∑ →⋅= maxjijiI
ϕϕ

ρσσ  (12) 

where 
M

M
jiϕϕ

ρ  is the matrix of sample correlation coefficients between the parameters from 

the set Y , and the maximum is on the set of all tuples M,...,, σσσσ 21= , where 1=iσ , 

M,i 1= . 

Using the function )H(P t !  from (10) with 0=! , and 1=t , i.e., )H(P2 , we consider the 

cut function 

 








∅=∅=

≠∅≠
=
∑
∈
∈

.or          when          

, , if    ,

YH

YHH
)H(P Hj

Hi
ji

0
4

ϕϕ
ρ

 

Make the transformation 

 ha jiji +=
ϕϕ

ρ , 

where h is a number such that 

 ji
M,j,i

maxh
ϕϕ

ρ 
1=

≥ . 

                                                           
8 Other formulations of this problem are proposed in [10] and [11]. 
9 The function ( ))H(P3−  is a particular case of the class of functions )H(P~  described at the beginning of 

this section, which are extremized by such enumeration. 
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Then 
 hHH)H(P)H(P ⋅⋅+= 42 , 

where HWH \= . The function )H(P4  belongs to the class of nonsubmodular functions 

)H(P~ . Therefore, for a fixed H , the solution of the problem min)H(P →4  coincides 

with the solution of the problem min)H(P →2 . Hence it follows that the global minimum of 

)H(P4  may be found by enumerating its values on the corresponding set of minimum points 

of )H(P2 ; for even W , it is necessary to enumerate the minima of )H(P2  for all cardinal-

ities H  from { }  221 W,...,, , whereas for odd W , for all cardinalities ( ){ }    2121 +W,...,, . 

Minimization of )H(P2  for constH =  is problem (4). 

Example 4. Aggregation of an empirical graph [5] requires algorithms for the selection of 

a certain subset from the vertex set of the graph. The elements of this subset should be “dis-

tant” in a certain sense from most vertices and from one another [13]. In order to formulate 

the corresponding problem, we construct the submodular function 

 ∑∑
∈
∈

∈
∈

+=

Hj
Wi

ji

Wj
Hi

ji aa)H(P   , .WH ⊆  (13) 

Let ji  δ  be the adjacency matrix of the original graph G , and ji  α  the matrix of 

weights responsible for the “interaction” of vertex i  with vertex j . The matrix jia    is de-

fined as jijijia    αδ ⋅= . Then sought subset *H  of vertices which play “a certain role” in the 

system W  (of interacting elements) can be formulated as the solution of the problem 

 
kH

)H(P
=

→ min  (14) 

Note that the first term in (13) is the function with 1=! , 1=t  from (10), whereas the 

second term is the same function on the matrix TA . By Theorem 3, both these functions are 

submodular and the function (13) therefore is also submodular. This implies that the problem 

(14) is reducible to the problem (4). 
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APPENDIX 

Proof of Theorem 1. In order to prove the first proposition of the theorem, we use the ex-

pansion (I.6) and definition (5). Then 

{ } { } { } )i,...,i,i,i('...)i,i,i(')i,i(')A(P)H(P tttttt       21111 πππ ++++= −− , (A.1) 

where ti,...,i,i 21  is a suborder of the order ABJ \ , ]B,A[H ∈ . Then we obtain the sought 

proposition by (I.3) and (6). 

To prove the second proposition, it suffices to note that if the reversal of the second rejec-

tion rule does not hold, then 0≤)AB,i(' \π  ABi \∈∀  , i.e., the same is also true for the 

element 1i  in the expansion (A.1). By (6), (I.3), we thus obtain 0<)J,B,A(F AB\ . This im-

mediately proves the second proposition. 

The third proposition is easily obtained from (7) and (6), arbitrariness of the order ABJ \  

and the corollary of the duality theorem. 

Finally, the fourth proposition follows directly from the existence of an effective algo-

rithm to isolate the maximum core of a monotone system. ! 

Proof of Theorem 2. Note that by (8), ( ) )
'

G(F)B,A(F~ A
B= . Then the first proposition of 

the theorem clearly follows from the definition of the core of a monotone system. The second 

proposition follows from the definition of the core and from the fact that ABH \⊆∀  , 

{ } )iH,j()H,j(   \ππ ≤ , { }( )   iABj \\∈  (by definition of monotone system). 

Let us prove the third proposition. We have 

 ( ) )B,A(F~At)A(P)B,A(P~t ⋅−+=   , 

 { } { } ( ) { } { } )B,iA(F~)B,iA(F~At)i,i(')A(P)iA(Pt           ∪−∪⋅−++=∪ π , 

whence 

 
{ } { } { }

( ) { } { }[ ].       

      

)B,iA(F~)B,iA(F~At

)B,iA(F~)i,i(')B,A(P~)B,iA(P~ tt

∪−∪⋅−+

+∪−=−∪ π
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Consider two cases: 

a) ( ) { }  i
'

G A
B = . 

In this case, clearly, 

 { } )B,A(F~)i,i(' =  π , and 

 { } ( ) { }[ ].       )B,A(F~)B,iA(F~At)B,A(P~)B,iA(P~ tt −∪⋅−−=−∪ 1
 

It is also clear that { } ]iA[H     ∪∈∀  

 { } )H('F)H('F B,AB,iA =∪    , 

i.e., by the definition of the core and arbitrariness of H , 

 { }
{ }( ) { } ( ) )B,A(F~)

'
G('F)H('F)B,iA(F~ A

BB,AB,iAiAHH
=≥=∪ ∪∪⊆       

  min  
\

, 

whence 

 { } 0≥−∪ )B,A(P~)B,iA(P~ tt   ; (A.2) 

b) ( ) i
'

G A
B = . 

Then, seeing that i  is the last element in the defining sequence, we conclude that the 

weights on the remaining elements in the new defining sequence do not change. Since by as-

sumption ( ) { }  i
'

G A
B ≠ , we have 

 { } )B,A(F~)B,iA(F~ =∪    

and therefore { } { } )i,i(')B,iA(F~     π≤∪ , whence we also obtain (A.2). ! 

Proof of Theorem 3. Take the derivative of the function )H(P t !  in the sense of defini-

tion (I.5). We have 

 ( )











⋅−+⋅⋅= ∑ ∑

∈ ∈Hj Hj
jijit ata)H,i(    !!! 2π , WHi ⊆∈ . 

Let !! >−t , i.e., !⋅> 2t . Then 

 ( )











⋅⋅−+⋅⋅= ∑ ∑

∈ ∈Hj Hj
jijit ata)H,i(    !!! 22π . (A.3) 

Clearly, the system (A.3) is monotone, and therefore )H(P t !  is supermodular. 

Arguing as above, we prove the remaining propositions. ! 
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