
Submodular Set Functions and Monotone Systems in Aggregation Problems. I * 

I. B. Muchnik and L. V. Shavartser UDC 62-506.1 
A relationship is established between two types of set functions – submodular functions and 
functions determining the extremal properties of monotone systems. It is shown that this rela-
tionship may be utilized in applied combinatorial optimization problems, in particular, for 
identifying the structure of empirical information. 

1. Introduction 

Data aggregation problems are often stated in terms of extremizing some criteria, which 

measure the quality of the sought result [1,2]. Problems of this kind are reducible to combi-

natorial optimization. Traditionally, these problems were solved by local optimization 

schemes, which produced only approximate solutions [1,2]. In recent years, it became clear 

that some aggregation problems may be treated as extremizing a submodular function (SF) 

[3] or a search for a core of a monotone system (MS) [4,7]. These two systems of set func-

tions have many properties, which make it possible to find their global extrema. The work on 

submodular functions and monotone systems has pursued different paths different disci-

plines. Yet there is a way to link these disciplines, since the derivatives of SF, defined in a 

certain way, are the monotone functions entering the definition of MS. The authors of [8], 

who proposed this definition of derivatives, also showed that any set function with a mono-

tone derivative is submodular. However, not being familiar with [9], they could not deal with 

MS as an independent object with its own specific extremal properties, nor could they of 

course consider the dependence between the properties of these two systems of set functions. 

The aim of the present paper is to investigate this dependence. The main focus is on top-

ics, which are directly related to the development of effective extremum-seeking algorithms 

for these functions. 

Section 2 of Part I analyzes the dependence between submodular set functions and mono-

tone systems. Necessary and sufficient conditions are derived for a monotone system to be a 

derivative of a submodular function. It is shown that the cores of monotone systems associ-
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ated with the rank functions of matroids have a graphic interpretation; the analysis suggests 

effective solubility of one maximin problem on the set of vertices of a convex polyhedron 

generated by SF. In this section, we present a duality theory of MS, which is the basis for the 

derivation of bounds of the following algorithms. It is also shown that a stronger form of the 

duality theorem makes it possible to link the theory of monotone systems with an important 

class of applied scheduling problems [10,11]. Section 2 reviews maximin-seeking methods 

for SF, both global maxima and maxima under inequality constraints. It is shown that these 

methods essentially utilize the monotonicity of the derivative of the SF. Known methods are 

generated and extended. 

Problems with equality constrains so far have not been considered in the literature. The 

solution of such problems is particularly difficult, because a set of fixed-cardinality subsets is 

not a lattice. However, our approach suggests a modification of the branch-and-bound algo-

rithm for the global optimization problem, capable of solving optimization problems with 

equality constraints. A description of the maximum-seeking problem for SF on fixed-

cardinality subsets concludes Sec. 3. 

Part II will deal with minimization of SF, and also with applications of the various prob-

lems to empirical data processing. The analysis of these problems essentially utilizes the ex-

tremal properties of MS. Proofs of theorems are collected in the Appendices. 

2. Monotone Systems as Derivatives of Submodular Functions 

Let a number )H,i(+π  be associated with the subset WH ⊆  ( )NW =  and the element 

Hi ∈ , such that 21 H,H,i ∀ : WHHi ⊆⊆∈ 21  we have 

 )H,i()H,i( 21
++ ≥ ππ . (1) 

Define the set function 

 )H,i()H(F
Hi

+

∈
= π max , WH ⊆ . (2) 
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The construction (1), (2) is denoted by F,,W +π  and is called ⊕-MS [9]. A different 

construction F,,W −π , defined similarly but with ≥  replaced by ≤  and +  by −+ by   in (1) 

and max  replaced by min  in (2), is called ⊖-MS. In what follows, we deal with ⊕-MS, and 

the sign ⊕ is omitted. 1 

An effective procedure is available [9], which finds the global minimum of the function 

)H(F  on the set of all subsets of W  and simultaneously the maximum core – )H(Fmin  

with argument of maximum cardinality. 2 In order to describe the procedure, we introduce the 

notion of interval – a family ]B,A[ , WBA ⊆⊆  of subsets WH ⊆  such that BHA ⊆⊆ . 

The core extraction procedure is the following. Starting with interval ]W,[ ∅ , succes-

sively reduce the interval from the right, { } ]iB,[]B,[ B   \∅→∅ , where 

)B,i(max)B,i(
BiB ππ  

∈
= . In each reduction step, record the omitted element Bi  and the value 

)B,i( Bπ . Continue the procedure until W  has been exhausted. The sequence of omitted 

elements ,...i,i BB 21
, where { }Bkk iBB  \=+1 , is called maximum defining sequence. We de-

note it by I . Then in the sequence ,...B,BBI 21=  of the right ends of the intervals, take the 

first subset B  with )B,i(min BBB i
π 

∈
; this is the maximum core of the MS. 

Let { }  J=Ω  be the set of all orders on W  ( J  is an order) and let 

 )H),J(i()H,J( HπΠ = , (3) 

where WH ⊆ , )J(i H  is the first element of the set H  in the order J . For instance, if the 

order is the maximum defining sequence I , then the function )H,I(Π  coincides with the 

values of the function )H(F  on the sets H  from the sequence IB . The following theorem 

holds. 

                                                           
1  It is easily seen that all the properties of ⊕-MS discussed below are symmetrical to the properties of ⊖-MS 

with ≥  replaced by ≤ ,   + by   − , and max  by min . 
2  The arguments of F(H)min  are called the cores of MS. It is shown in [9] that the cores of a MS form a 

semilattice – it is closed under the operation of union. Therefore, in particular, the maximum core is a priori 
the largest, i.e., includes any other core. 
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Theorem 1 (duality). 3 For the subset *H  to be a solution of the problem 

 
WH

)H(F
∈

→ min , 

it is necessary and sufficient that there exists an order Ω∈*J  such that the function 

)H,J(Π  on the pair ( )** H,J  satisfies the condition 

 )H,J()H,J()H,J( **** ΠΠΠ ≤≤ , 

i.e., the point ( )** H,J  is a saddle point of the function )H,J(Π  on the set 

( ){ }WH,J)H,J ⊆∈ Ω   . 

Corollary of Theorem 1. 

 )H,J()H,J(
JWHWHJ

ΠΠ
ΩΩ

 max  min min  max
∈⊆⊆∈

= . 

Note that 

 )H(F)H,i()H,J(
HiJ

==
∈∈

πΠ
Ω

 max max , WH ⊆ , 

where it follows that if there exists an effective procedure to compute the right-hand side of 

the equality in the Corollary of Theorem 1, then it also determines the value of the left-hand 

side. 

Remark. The duality theorem can be strengthened as follows. Let ΩΩ ⊆' . Introduce a 

restriction of the function )H(F  on the set 'Ω , 

 )H,J()H(F
'J' Π

ΩΩ  max
∈

= . 

It is easy to show that the algorithm minimizing the function )H(F 'Ω  in this case differs 

from the core-seeking algorithm described above only in that it uses a different construction 

of the sequence ,...i,i BB 21
. Specifically, let H'Ω  be the set of orders induced by the set 'Ω  

on WH ∈ . Then in each step of the construction of the defining sequence, in addition to the 
condition )B,i(max)B,i( jBijB

j
j

ππ
∈

=  , N,j 1= , we should also have 
jNjj BBBB 'i,...,i,i Ω∈

+1
. 

                                                           
3  This duality property has no relation to the duality considered in [9]. 
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Theorem 1a. For the set *H  to be a solution of the problem 

 
WH' )H(F

⊆
= minΩ , 

it is necessary and sufficient that there exists an order 'J * Ω∈  such that )H,J( **Π  is a 

saddle point of the function )H,J(Π  on the set ( ){ }WH'JH,J ⊆∈ ,   Ω . 

The proof of the theorem is similar to the proof of Theorem 1, with Ω  replaced by 'Ω  in 

all statements. 

If 'Ω  is the set of orders consistent with some acyclic digraph, then we obtain the result 

of [11]. Thus, there is a definite link between the theory of MS and problems of maximum-

penalty minimization in single-stage scheduling systems [10]. 

In addition to the general analogy, this link also applies to particular cases. For instance, a 

special class of MS includes systems with separable variables ( )H(f)i(g)H,i( +=π , 

see [5] ), and the maximum core seeking algorithm is the simplest for these functions. Simi-

larly, the scheduling theory of one-stage systems considers penalty functions with separable 

variables ( ii a)t()t( +=ϕϕ , see [10] ), which are analogs of the functions )H,i(π  in MS. 

These functions lead to the simplest optimal scheduling algorithm. 

Let us now consider MS as the derivatives of SF. 

A submodular set function is the function )H(P , WH ⊆ , with the property 4 

 )BA(P)BA(P)B(P)A(P ∩+∪≥+  WB,A ⊆∀  . (4) 

A derivative of the function )H(P  on the element (“in the direction”) Hi ∈  is the func-
tion 5 

 { } )iH(P)H(P)H,i(   \−=π . (5) 

For WHH ⊆⊂ 21 , and { }ki,...,iHH 112 =\ , we have the obvious expansion 

{ } { } { } )i,...,i,iH,i(...)i,iH,i()iH,i()H(P)H(P kkk 111121211112 −∪++∪+∪+=    πππ .(6) 

                                                           
4  The function ( ))H(P− , where )H(P  satisfies (4), is called supermodular. A function, which is both 

sum- and supermodular, is called modular. 
5  To simplify the discussion, both the function )H,i(π  and the associated monotone system F,,W π  are 

treated in what follows as the derivatives of some submodular function. 
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Theorem [8]. The following statements are equivalent: 

1) )H(P  is submodular function. 

2) )H,i()H,i( 21 ππ ≥  for all i , 1H , 2H , such that WHHi ⊆⊆∈ 21  [for supermodular 
function, respectively, )H,i()H,i( 21 ππ ≤ ]. 

Thus, the derivative of a SF is monotone decreasing in the set argument and, conversely, 

a set function whose derivative is monotone increasing in the set argument is supermodular. 

However, not every MS is a derivative of some SF. 

Theorem 2. A MS is a derivative of a SF if and only if for all WHjiji ⊆∈ ,  : , , we have 

 { } {} )iH,j()H,j()jH,i()H,i( \\ ππππ −=− . (7) 

Sufficiency of Theorem 2 follows from the fact that, when (7) holds, the sought SF may 

be defined by (6) – the result is well-defined by (7), since the value of SF is independent of 

the integration path of its derivative. 

Corollary of Theorem 2. Let F,,W π  be the derivative of an antitone submodular func-

tion )H(P  ( ))H(P)'H(PH'H ≥⇒⊆ . Then if the element j  is removed from the set H , 

the weights )H,i(π  of all the remaining elements increase at most by absolute value of the 

weight of the element j  on the set H : 

 { } )H,j()H,i()jH,i( πππ ≤−\ . 

Consider another special class of MS, which provides additional opportunities for gener-

ating SF. 

Let F,,W Mπ  is a MS with a monotone derivative, then the function 

 ∑
∈

=
Hi

M )H,i()H(P π , WH ⊆  is submodular. 

In Part II we will identify a system of SF composed in this way from MS with a constant 

derivative on H  ( { } )j,i(f)jH,i()H,i( =−   \ππ  is independent of H ). We will show that 

this system plays an important role in aggregation problems. 

In conclusion of this section, let us consider two examples, which demonstrate the use of 

these relationships between MX and SF. 
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Example 1. We know [12] that the rank function )H(r  of the matroid 6 ( )F,W , defined 

on the set W  is submodular ( )WH ⊆ . Let rr F,,W π  be the MS, which is the derivative of 

the function )H(r . 

Theorem 4. For the matroid ( )F,W  to have a cycle it is necessary and sufficient that rF  

vanish on the core *H  of the MS rr F,,W π , 

 0=)H(F *r . (8) 

The set W'H ⊆  is a cycle of the matroid ( )F,W  if and only if it is minimal (by inclusion) 

core of the MS rr F,,W π . 

Theorem 5. If the matroid ( )F,W  contains at least one cycle, the largest core of the sys-

tem rr F,,W π  is the union of all the minimal cores of the system rr F,,W π , i.e., all the 

cycles of the matroid ( )F,W . 

We can interpret these theorems in two ways: on one hand, they provide a new charac-

terization of the set of cycles of a matroid in terms of the properties of MS; on the other hand, 

they identify a new object in the analysis of MS – cores minimal by inclusion. For instance, 
in the MS with ∑

∈
=

Hj
jia)H,i(  π  studied in [4], practical considerations indeed suggest that 

we look for minimal cores. It is easy to show that if all 0>jia  , then this core is unique, and 

a simple algorithm finds it. 

Example 2. With each SF )H(P , WH ⊆ , we can associate a convex polyhedron [13], 

 








≤=⊆∀ℜ∈= ∑
∈

  :  ,  |
Hi

W )H(P)i(x)H(xWHxx)P(M , 

where Wℜ  is the set of vectors { }Wi)i(xx ∈=  , , ℜ∈)i(x . From )P(M  we can isolate a 

convex set of { }  ,   | )W(P)W(x)P(Mxx)P(B =∈= , which is bounded [13]. 

Let )P(V  be the vertex set of )P(B , and consider the following problem: find a vertex 

)P(Vx* ∈  and a coordinate Wi* ∈ , such that 

 )i(x)i(x
Wi)P(Vx

**  min max
∈∈

= . (9) 

                                                           
6  All the necessary definitions are given in Appendix 2. Note that by the definition of matroid, the empty set is 

always independent, and therefore a cycle, if it exists, is always a nonempty set. 
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Theorem 6. The problem (9) reduces to finding the maximum-cardinality core of the MS 
PP F,,W π  – the derivative of the generating function )H(P . 

By Theorem 6, the problem (9) is solved in time ( )22NΟ  ( )NW = . 

3. Monotonicity of the Derivative and Maximum-Seeking Algorithms for SF 

Consider the following problems: 

 
WH

)H(P
⊆

→ max , (10) 

 
NkWH

)H(P
≤≤⊆

→
H ,

max , (11) 

 
NkkNHWH

)H(P
≤−≥⊂

→
 , ,

max , (12) 

 
NkHWH

)H(P
<=⊆

→
 ,

max . (13) 

The problem (10) and its algorithm were first proposed in [14]. Then this method was 

improved in [15-19]. A modified form of these algorithms is also applicable for the problem 

(11) and (12). All these algorithms are variants of the branch-and-bound method. A number 

of suboptimal algorithms were proposed in [9]: these algorithms can be used to estimate the 

quality of the approximate solutions, and these estimates lead to a stronger form of the 

branch-and-bound algorithms. 7 

The algorithms are based on the properties of SF, which yield sufficient conditions for 

reduction of the localizing solution of the set-theoretic interval or rejection of unpromising 

intervals. Different authors develop their own schemes of the algorithm, utilizing only part of 

the SF properties. Yet all these properties stem from the same basic fact, namely that the de-

rivatives of SF form MS. Therefore, by treating these properties in a unified framework, we 

will not only incorporate in one algorithm all the various sufficient conditions for interval 

reduction or rejection, but also find ways for development of algorithms for new problems. In 

                                                           
7  Note that the “greedy” algorithm is in a certain sense the best among the suboptimal algorithms proposed in 

[8]. 
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particular, proceeding along these lines, we have constructed an algorithm for the problem 

(13), which cannot be solved by available algorithms. Let us now present this unified frame-

work 8 and use it to examine the algorithms for problems (10)-(13). 

Definition. A point of local maximum of the function )H(P  is the subset WH ⊆° , such 

that 
 0≥° )H,i(π  °∈∀ Hi , 

 { } 0≤∪° )iH,i(  π , °∈∀ HWi \ , 

where F,,W π  is the MS of the derivatives of the function )H(P . 

Cherenin’s Theorem. 9 Let Ni,...,iJ 1=  be an order on the set W . If the set 

{ }Nkk
** i,...,i,iH 1+=   is a point of local maximum of )H(P , then 

 { } 01 ≤+ )i,...,i,i,i( Njjj  π , kj ≤ , 

 { } 01 >+ )i,...,i,i,i( Njjj  π , kj > . 

Consider the sequence of nested sets { } { } { }    ,...,   ,  , Nk i,...,iHiiWiWW =∪ 211 \\  gener-

ated by successively dropping the elements of W , taken one by one in the order J . This se-

quence is called the chain induced by the order J . Then, Cherenin’s Theorem implies that 
**H  is the point of global maximum of )H(P  on the entire chain induced by the order J . 

The proof of the theorem easily follows from monotonicity of the derivatives of the func-

tion )H(P . 

Cherenin’s Theorem indicates that a SF does not have too many maxima, and the global 

maximum can be chosen by direct enumeration. It provides two branch-rejection rules reduc-

ing this enumeration. Let the local maximum point °H  of function )H(P  belong to the in-

terval ]B,A[ . 

                                                           
8  In Part II, we will show that this unified framework leads to a symmetric scheme for the solution of minimi-

zation problems of submodular functions. 
9  This is a restatement of the theorem from [17], which in its original form does not utilize the notion of MS; 

all the known facts, including the maximum-seeking algorithms, and in particular, the enumeration-reducing 
rules described below, are presented in a similarly restated form. 
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First Rejection Rule. If 0>)B,i(π  for some ABi \∈ , then °∉ Hi  ( { } ]B,iA[H  ∪∈°  is 

the left-reduction of the interval). 

Second Rejection Rule. If { } 0<∪ )iA,i(  π  for some ABi \∈ , then °∈ Hi  

( { } ]B,iA[H  ∪∈°  is the right-reduction of the interval). 

These rules are clearly equivalent to (yet another) restated form of Cherenin’s Theorem. 

Cherenin’s algorithm based on these two rules is a branch-and-bound algorithm with the 

following scheme. 

1. Construct the solution tree, starting with the vertex ]B,A[ , ∅=A , WB =  and 

{ } { } ]iB,A[]B,A[]B,iA[   \→←∪ , where ABi \∈ ; to each vertex assign the best 

value so far ( ))B(P),A(Pmaxr  = . The leaves of this tree are the intervals ]B,A[ m 

where BA = . 

2. Traverse the tree: each step involves successive reduction of the interval ]B,A[  by 

the first or the second rule, until no further reduction is possible. If the conditions of 

the rules are not satisfied for any element ABi \∈ , descend along the leftmost of 

those branches, which have not been traversed. 

3. The leaf with the maximum best value r  so far is the solution. 

The algorithm is effective because when it reaches the vertex ]B,A[  where either A  or 

B  is strict 10 local extremum, the next step (by the rejection rule) is a leaf. 11 

Third Rejection Rule. Let maxr  be the value of r  attained by the given step of the algo-

rithm. let 

 { } )iA,i()A(PP
ABi

B,A ∑
∈

∪+=
\

 π1 , ∑
∈

−=
ABj

B,A )B,j()B(PP
\
π2 . 

                                                           
10 The case with nonstrict inequalities was considered in [18]. 
11 It is noted in [8] that the search even for local extremum may have exponential complexity. Yet in practice, 

the proposed algorithm converges in )N( 3Ο  steps [20]. 
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Suppose that the interval ]B,A[  cannot be reduced further by the first two rules. Then, if 

maxB,A rP <1  or maxB,A rP <2 , the solution of (10) is not contained in the interval ]B,A[ . 

Proof of the Third Rule. We will show that C ∀ , ]B,A[C ∈  we have 

 )C(PP B,A ≥1 , (14) 

 )C(PP B,A ≥2 . (15) 

Use the expansion (6) 

{ } { } { } ),i,...,iA,i(,...,)iiA,i()iA,i()A(P)C(P kk 121211    ∪++∪∪+∪+= πππ  

{ } { } { } ),j,...,jC,j(,...,)jjA,j()jC,j()C(P)B(P mm 121211    ∪++∪∪+∪+= πππ  

where ki,...,i1  is some ordering of the elements from AC\ ; mj,...,j1  is an ordering of 

the elements from CB\ . By (7), 

 { }∑
∈

∪+≤
ACi

),iA,i()A(P)C(P
\

 π  (16) 

 ∑
∈

+≤
CBj

)B,j()B(P)C(P
\
π . (17) 

If the first rule cannot be applied to ]B,A[ , then 0≤)B,j(π  Bj ∈∀  , if the second rule 

is inapplicable, then { } 0≥∪ )iA,i(  π  ABi \∈∀  . From (16) and (17) we thus obtain (14) and 

(15). 

By the third rule, the algorithm is augmented, first, by calculation of the bounds B,AP1  and 

B,AP2  at the vertex ]B,A[  and, second, by rejection of unpromising intervals ]B,A[  

(branches of the solution tree). 12 

The original [17] and the modified [18,19] algorithms may be applied to solve the prob-

lem (11). In this case, the leaves are the intervals ]B,A[  with either kA =  or kB = . The 

problem (12) is solved by passing to a different 13 SF [8], )HW(P)H(P \= . 

                                                           
12 Other authors also pursue the logic applying special rules to an “unreduced” (in Cherenin’s sense) interval. 

Thus, current local updating of the data matrix is proposed in this case for local problems in [21]. 
13 The problem (12) for )H(P  is transformed to the problem (11) )H(P . 
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Choice of the starting best value for the solution of the problem (11) with Nk =  and for 

the solution of the problem (10) may be performed by the “greedy” procedure 14 [8]: starting 

with ]W,[ ∅ , successively reduce the interval “from the left” { } ]WiA[]WA[ A  ,   , ∪→ , 
with Ai  chosen from { } { } )iA,i(max)iA,i(

AWiAA    ∪=∪
∈

ππ
\

, if { } 0≥∪ )iA,i( AA  π ; otherwise 

(if { } 0<∪ )iA,i( AA  π , the algorithm stops (it also stops when { } kiA A =∪  ). 

Proof of choice of the starting value. The bound on the approximate solution obtained by 

this procedure (its “closeness” to the exact solution) has the form [8] 

 
k

max

Gmax

k
k

k)(PP
PP






 −≥

⋅+∅−
− 1

θ
, (18) 

where maxP  is the exact solution of the problem (11), GP  is its “greedy” solution, θ  is a 

constant such that θπ −≥)H,i(  WH ⊆∀  , Hi ∈∀  . 

This bounding method is based on the relationship 

 WT,S ⊆∀   { }∑ ∑
∈ ∈

∪−∪+≤
STi TSi

)TS,i()iS,i()S(P)T(P
\ \

ππ  , 

which, in turn, directly follows from the expansion (6) using the monotonicity of the deriva-

tive (7). 15 

These algorithms will not solve the problem (13). 16 However, they may be modified in 

order to solve this problem. Specifically, using (16), (17), we obtain the following bounds 

H ∀ , ]B,A[H ∈ , kH = : 

 ( ) { } )iA,i(Ak)A(P)H(P
ABi

 max ∪⋅−+≤
∈

π
\

, (19) 

 ( ) )B,j(kB)B(P)H(P
ABj

π min
\∈

⋅−−≤ . (20) 

As a result, we obtain the following branch-and-bound algorithm. 

                                                           
14 The proposed “greedy” procedure, unlike the standard version (see Appendix 2), executes, not on an arbitrary 

system of independent subsets, but on the set of all subsets of W . It is designed to find, not an exact extre-
mum of a modular function, but an approximate extremum of a submodular function. The procedure corre-
spondingly necessitates checking the condition { }( ) F∈∪    iA  and the stopping rules in each step. 

15 It is also shown in [8] that this inequality may be chosen as one of the equivalent definitions of SF. 
16 If )H(P  is a submodular function, which is monotone nondecreasing with the extension of the set argu-

ment, the “greedy” procedure described above also gives an approximate solution of the problem (13) [with 
the bound (18)]. 
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1. Construct the solution tree as in Cherenin’s algorithm (without evaluating r  in each 

step); the starting best value may be chosen as the value of )H(P  on any flexible 

]B,A[H ∈ ; the leaves are ( ) ( )    kBkA =∨= ; update the best value so far when a 

leaf is reached. 

2. Traverse the tree along the leftmost of the remaining branches, reaching “promising” 

vertices for which the bounds (19) and (20) are greater (not less) than the maximum 

of the best values so far. 17 

With each interval ]B,A[ , associate the SF )H(PAB  defined on the set of subsets of 

AB\ , )AH(P)H(PAB ∪= , ABH \⊆ . Then (18) for )H(PAB  takes the form 

 AB'k

'k'k
AB

G
ABmax

AB P~'k)(PPP =
−

⋅⋅+⋅∅−≤
α

αθα
1

, (21) 

Clearly, (21) suggests further rejection of unpromising intervals for the case 18 
max

AB rP < . Note, however, that this bound requires ( )  22AB\Ο  computations of )H,i(π , 

whereas the previous bounds required only ( )AB\Ο  such computations each. 

APPENDIX 1 

Proof of Theorem 1. Sufficiency. We will show that if ( )** H,J  is a saddle point of the 

function )H,J(Π , then 

 )H(F)H(F * ≤ , WH ⊆ . (A.1) 

Indeed, 

 )H(F)H,J()H,J(
WHJWH

**  minmax   min
⊆∈⊆

== ΠΠ
Ω

. 

On the other hand, )H(F)H,i(max)H,J(max)H,J( **

*Hi

*

J

** ===
∈∈

πΠΠ
Ω

  , which 

proves (A.1). 

                                                           
17 In Part II, the bound (20) will be strengthened with the aid of the extremal properties of the derivatives of SF. 
18 The feasibility of this bound has been noted in [8]. 
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Necessity. We will show that if *H  is a solution of the problem 
WH

min)H(F
⊆

→ , then there 

exists a sequence IJ * ∈  such that 

 )H,J()H,J()H,J( **** ΠΠΠ ≤≤ . (A.2) 

The proof of this relies on the following lemma. 

Let Ω∈= Nj,...,j,jJ 21 . Denote =JH { } N,kj,...,j,jHH Nkk 11 == +  ,   . 

LEMMA. 

 )H,J()H,J(
WHH J

ΠΠ  min min
⊆∈

=
H

. 

Proof of Lemma 1. Let JH H∉ . Then there exists a set J'H H∈ , such that its first ele-

ment in the sequence J  coincides with the first element of the set H  in the sequence J ; a 

priori, H'H ⊇ . By monotonicity of the function )H,i(π  and from the definition of 

)H,J(Π , we have )H,J()'H,J( ΠΠ ≤ , which proves Lemma 1. 

Let us now prove (A.2). Take *J  as the defining sequence. Then by Mullat’s theorem [9] 

and by the definition of )H,J(Π  and )H(F , we have 

 )H,J()H(F)H,J( *

J

*** ΠΠ
Ω

 max
∈

== , (A.3) 

 )H,J()H,J( *

H

**

*J
ΠΠ  min

H∈
= . (A.4) 

The left-hand side of (A.2) clearly follows from (A.3). By Lemma 1, from (A.4) we ob-

tain the right-hand side of (A.2). ! 

Proof of Theorem 2. Necessity. By the theorem [8], the derivative of the SF )H(P  is the 

MS F,,W π . From the definition of the derivative (5), it follows that Hj,i ∈∀  , WH ⊆  

 
{ }

{ } { } { }
{ } , 

   
 

)j,iH(P)H(P
)j,iH(P)iH(P)iH(P)H(P

)iH,j()H,i(

\
\\\

\

−
=−+−

=+ππ
 

 
{ }

{ } { } { }
{ } , 

   
 

)j,iH(P)H(P
)j,iH(P)jH(P)jH(P)H(P

)jH,i()H,j(

\
\\\

\

−
=−+−

=+ππ
 

whence we obtain necessity of the condition (7). 
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Sufficiency. Let WH'H ⊆⊆ . Let dH i,...,i,iJ 21=H'\  be an order on 'HH \ . Denote 

{ } { } { } )'Hi,...,i,i,i(...)'Hi,i,i()'Hi,i()J( dddHH ∪++∪+∪= − 1112211    πππϕ '\ . 

We will show that for any two orders 11
2

1
1

1
d'HH i,...,i,iJ =\  and 22

2
2
1

2
d'HH i,...,i,iJ =\ , we 

have 
 )J()J( 'HH'HH

21
\\ ϕϕ = . (A.5) 

This will be proved by mathematical induction. For 2=d , (A.5) is (7). Let (A.5) hold for 

all k,...,d 2= . We will show that then it also holds for 1+= kd . 

Consider the elements 1
1

1
+= kij  and 2

1
2

+= kij . If jjj == 21 , then 

 { } )jH,j()i,...,i,i()J( k'HH  \\ πϕϕ += 11
2

1
1

1 , 

 { } )jH,j()i,...,i,i()J( k'HH  \\ πϕϕ += 22
2

2
1

2 , 

and the first terms in the right-hand sides of these equalities are also equal by the inductive 

hypothesis. Therefore, (A.5) holds. Now let 21 jj ≠ . Let 

 21
121

3 j,j,i,...,i,iJ k'HH −=\ , 

 12
121

4 j,j,i,...,i,iJ k'HH −=\ , 

where 121 −ki,...,i,i  is an ordering of the elements from { }( )  21 j,j'HH ∪\ . Then, as is easily 

seen, 
 { } )jH,j()j,i,...,i,i()J( k'HH   112

121
4 \\ πϕϕ += −  

should be equal to 

 { } )jH,j()j,i,...,i,i()J( k'HH   1121
1

1
2

1
1

1 \\ πϕϕ += − , 

since { }  111
2

1
1

2
121 jHi,...,i,ij,i,...,i,i kk \==− , and therefore by the inductive hypothesis 

)i,...,i,i()j,i,...,i,i( kk
11

2
1
1

2
121 ϕϕ =− . Similarly, )J( 'HH

3
\ϕ  should be equal to )J( 'HH

2
\ϕ . 

Finally 
 { } { } )jH,j()j,jH,j()i,...,i,i()J( k'HH     22211

121
3 \\\ ππϕϕ ++= −  

and 
 { } { } )jH,j()j,jH,j()i,...,i,i()J( k'HH     21212

121
4 \\\ ππϕϕ ++= −  

should be equal by assumption. Therefore, (A.5) holds. 
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We have thus proved (A.5). This means that the MS F,,W π  uniquely determines the 

function )H(P  in accordance with the expansion (6). It is easy to see that the system 

F,,W π  is the derivative of this function, which by the theorem of [8] proves its submodu-

larity. ! 

Proof of Theorem 3. Consider 

{ } { }( )
{ }

∑
∈

−+=−=
  

M        
iHj

MM )iH,j()H,j()H,i()iH(P)H(P)H,i(
\

\\ ππππ . (A.6) 

The first term is monotone in H  since F,,W π  is a MS, the second term is monotone 

by monotonicity of the derivative F,,W π . ! 

APPENDIX 2 

The necessarily definitions [8,12]. Let W  be a finite set, F  is a nonempty set of subsets 

F  of the set W . The system ( )F,W  is matroid if a) ( ) ( ) FF ∈⇒⊂∧∈ 2121 FFFF , b) for any 

WH ⊆ , all the maximal (by inclusion) elements of set { }  ,   HFFF(H) ⊆∈= FF  have the 

same cardinality. 

The rank function )H(r , WH ⊆  of a matroid is the cardinality of the maximal (by in-

clusion) elements of (H)F . The rank function is submodular [12]. The elements of the sys-

tem F  are called independent subsets. The subsets of the set W  not included in F  are called 

dependent. A minimal (by inclusion) dependent subset is called a cycle of the matroid. 

If to each element i  of the set W  is assigned a weight )i(ω  and a modular function 

∑
∈

=
Hi

)i()H(P ω , is defined, then the problem of finding an independent subset which 

maximizes the function )H(P  on F  is solved by the “greedy” algorithm [12]: starting with 

]W,[ ∅ , successively reduce the interval from the left { } ]WiA[]WA[ A  ,   , ∪→ , where Ai  

is chosen such that AWiA \∈ , { }( ) F∈∪ AiA  . 

The solution is clearly *A , such that *AWi \∈∀  , { }( ) F∈∪   iA . 
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Proof of Theorem 4. Note that the function )H,i(rπ  may only take two values, 0  and 1, 

i.e., 

 
{ }
{ }




=
>

=
  .    if    ,

,    if    ,r

)iH(r)H(r
)iH(r)H(r

)H,i( \
\

0
1

π  (A.7) 

Also note that if H  is an independent subset, then 

 1==
∈

)H,i()H(F
Hi

rr  max π . 

Necessity. Let 'H  be a cycle. Then for 'Hi ∈∀   the subset { }  i'H \  is independent, but 

'H  is dependent. Hence 'Hi ∈∀   we have 

 { } )i'H(r)'H(r   \= . 

Thus, { } 0==− )'H,i()i'H(r)'H(r π  \ , i.e., 0=)'H(F  and 'H  is a core. We will show 

that it is a minimal core. Since 'H  is a cycle, i.e., a minimal dependent set, for 'HH ⊂∀  , 

we have that H  is dependent and therefore not a core. This implies that 'H  is a minimal 

core. This completes the proof of necessity. 

Sufficiency. Now let *H  be a minimal (by inclusion) core of the system rr F,,W π . By 

condition (8) of Theorem 4, 0=)H(F * , which implies that *H  is a dependent set. Assume 

that it contains another dependent set as a proper subset. Then it contains a cycle, i.e., it is not 

a minimal (by inclusion) core. The contradiction proves sufficiency. ! 

Proof of Theorem 5. We first prove the following lemma. 

LEMMA 2. Let Wi ∈  be such that it is not included in any cycle of the matroid ( )F,W . 

Then 1=)H,i(rπ  for all H  such that Hi ∈  ( )WH ⊆ . 

Proof of Lemma 2. Let 'H  be a maximal (by inclusion) independent subset of the set H  

and let 'Hi ∉ , Hi ∈ . Consider the set { }  i'H ∪ . It is dependent (by maximality of 'H  in H ) 

and therefore contains a cycle. But this contradicts the independence of 'H and the fact that i  

is not included in any cycle. The contradiction shows that i  is included in all the maximal 

independent subsets of the set H , which proves Lemma 2. 
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Let us now prove Theorem 5. By the proof of [9], the set of all cores is closed under un-

ion. Therefore, the union of all cycles is a core. We will show that it is a maximum core. 

Consider any set H , which contains the union of all cycles as a proper subset. This subset 

contains the element i , which is not included in any cycle, and therefore by Lemma 2, 

1=)H(F r , i.e., by the existence of a cycle (8), the subset H  is not a core of the MS 
rr F,,W π . ! 

Corollary of Theorem 5. The algorithm seeking the maximum core of the MS 
rr F,,W π  operates in the following way: calculate all )W,i(rπ , Wi ∈ , and a) if 

1=)W,i(rπ , Wi ∈ , then the sought core is W ; b) otherwise, drop the elements with 

1=)W,i(rπ . 

Proof of Theorem 6. It is shown in [13] that the point x  is a vertex of the polyhedron 

)P(B  if and only if there exists an order J  on the set W  such that )H,i()i(x J
k

k
J

k
J π= , 

N,...,k 1= , where WH...HH N =⊆⊆⊆ rrr
21 , is the chain of subsets of W  induced by the 

order J ; k
Ji  is the first element of the set J

kH  in the order J . 

Now, using (3), Theorem 1, and the effective procedure for isolating the largest core, we 

obtain the proposition of Theorem 6. ! 
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