
Quasilinear Monotone Systems * 

L. O. Libkin, I. B. Muchnik, and L. V. Shvartser UDC 519.876.2 
A class of monotone systems, called quasilinear, is introduced. It is shown that an arbitrary 
monotone system can be represented as a combination of such systems. It is established that 
the construction of monotone system, defined on Boolean, can be carried out to an arbitrary 
finite distributive sublattice. 

1. Introduction 

Monotone systems have been introduced by Mullat [1] as a method of modeling and 

analysis of composite systems of interconnected elements. An attempt of their use [2] has 

shown the importance of the construction of a universal mechanism for the generation of 

such systems. In this connection, in [3] one has suggested a heuristic method for the con-

struction of a large collection of various systems. 

It is known [4] that the macro-description of a monotone system, i.e., the collection of the 

embedded families of level sets, is a subsemilattice of sets. The possibility of such a lattice 

macro-description makes this method workable in applied investigations, where the funda-

mental aim is to give a qualitative characteristic for a composite system. 

In this paper we generalize the method of monotone systems. Monotone systems are con-

structed not only on semilattices of sets but also on finite distributive semilattices, while 

some of their elements are also on arbitrary semilattices. This, in turn, allows us to pose and 

solve problems of search of informative attributes for the construction of recognition rules 

and regression equations [5], and also the analysis of sublattices of partitions, generated by 

hierarchies, in particular of results of arbitrary agglomerative classification procedures [6]. 

Below we introduce also a class of monotone systems, called quasilinear, which is re-

markable by the fact that an arbitrary monotone system is constructed in the standard manner 

from the systems of the same class. This, one detects a fundamental possibility to select for 

each concrete case the most adequate system. It is interesting to mention that this class is en-

tirely determined by a special family of matrices, arising in game theory. 
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The separation of quasilinear systems allows us to represent intuitively the structure of 

the set of such macro-description of all possible monotone systems. This representation turns 

out to be a convenient means for the separation of classes of monotone systems with given 

macro-properties. 

In Appendix I we give a summary of the necessary definitions and facts from the theory 

of lattices, while in Appendix II we give the proofs of all the theorems of the subsequent sec-

tions. 

2. Generalized Monotone Systems and Quasilinearity 

In [7] it has been proven that the problem of the separation of the characteristic subsets 

(kernels) of monotone systems can be solved not only on the entire Boolean W2  (W  is a fi-

nite set, NW =  ), but also on any of its subsemilattices. However, this generalization car-

ries a serious limitation. For example, with its aid one cannot describe the interdependencies 

defined on the set of partitions. A subsequent generalization is connected with the investiga-

tion of the possibility of the construction of monotone systems on arbitrary finite semilat-

tices. 

The obtained results turn out to be important also for a deeper understanding of the 

known construction of monotone systems on a Boolean. Therefore, in the presentation, the 

general facts will be complemented by their illustration in the indicated special case. 

Definition 1. A function ℜ→LF :  on semilattice is said to be a quasiconcave (quasi-

convex) if Ly,x ∈∀  

 ( ))y(F),x(F)yx(F  min≥∨ , (1) 

 ( ))y(F),x(F)yx(F max ≤∨ . (2) 

A function, satisfying simultaneously (1) and (2), is said to be a quasilinear. 

Example 1. L  is a set of vectors { }nx,...,xx 1 =  in nℜ , closed with respect to the opera-

tion { } { }{ }  max  max  nn y,x,...,y,xyx 11=∨ . The function ( )   min n,jx j 1=  is quasiconcave 

and, under the additional conditions nx...xx ≥≥≥ 21 , it is quasilinear. 
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Example 2. A monotone system on a Boolean 1 [1-4]. 

A monotone system is defined as a collection   F,,W π , where W  is a finite set, 

NW =  , )H,i(π  is a function on WW 2× , defined on all pairs ( )H,i , where Hi ∈ . Regard-

ing )H,i(π , we assume that it is monotone with respect to the second argument: 

 { } )H,i()kH,i( ππ ≤ \  WHk,i ⊆∈∀  , 

while the function )H(F  is defined in terms of )H,i(π : 

 )H,i()H(F
Hi
π

∈
=  min . 

It is known [8] that )H(F  satisfies the quasiconcavity condition. 

Let L  be a finite semilattice, let )L(J  be the set of its indecomposable elements (with-

out zero), and let )x(J  be the subset of those elements from )L(J , which are smaller than 

or equal to x. 

In this section we consider functions defined on the semilattice { }00 \LL = , where 0  is 

the zero of the semilattice L . This will not be mentioned specially in the sequel and when 

and when we talk of functions, defined on L , then we assume that their values are not de-

fined on the element 0 . We note that the choice of an arbitrary value )(F 0  does not destroy 

the inequalities (1) and (2). 

Theorem 1. In order that a function )x(F  defined on a finite distributive semilattice L  

be quasiconcave, it is necessary and sufficient that there exist a function ℜ→)L(J:0π , 

which is monotone with respect to the second argument, 

 )L(Ja ∈∀  , )',a(),a('aL', !!!!!!   : 00 ππ ≤⇒≤≤∈∀  (3) 
and for which 

 )',a()x(FLx
)x(Ja

! min: 00 π
∈

=∈∀ . (4) 

Moreover, 
 

[ ]
)y(F)x,a(

x,ay∈
= max0π , (5) 

where [ ] { }xaLx,a ≤≤∈= !!    . 

This theorem is a generalization of a fact, proved in [8], for monotone systems on a Boo-

lean. 

                                                           
1  We note that a Boolean can be considered, in particular, as a semilattice with respect to the operation ∪ . 
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The selection of the distributive semilattices, for the investigation of the generation of 

monotone systems, is not accidental. As shown by the next theorem, we cannot relax the dis-

tributivity property and preserve the fundamental relations (3)-(5). 

Theorem 2. If each quasiconcave function )x(F , defined on a finite semilattice L , con-

taining with any two elements also their infimum, can be represented in the form (4), where 

),a( ! 0π , satisfying (3), is expressed in terms of )x(F  with the aid of (5), then L  is distribu-

tive. 2 

With the aid of )x(F , defined on a finite semilattice L , we construct a function of two 

variables )ba(F)b,a(g ∨= , where )L(Jb,a ∈ , i.e. g  is defined on the set )L(J)L(J × . 

Theorem 3. If F  is a quasilinear function on an arbitrary finite semilattice L , then F  

can be represented in the form 

 )b,a(g)b,a(g)x(F
)x(Jb)x(Ja)x(Jb)x(Ja ∈∈∈∈

==   min max    max     min  . (6) 

If L  is distributive, then each function of the form (6) is quasilinear. 

The monotone systems, generated by quasilinear functions, belong, in addition, to a cer-

tain special class. 

Definition 1. By an increment of a monotone system ),a(   !0π  on a triple L',,a ∈!!   , 

'a !! ≤≤ , )L(Ja ∈ , we mean ),a()',a()',,a( !!!!     00 ππΠ −= . 

Definition 2. A monotone function )l,a(   π  has an antimonotone increment if 

)L(Ja ∈∀ , 00 ',,', !!!!     ∀ , '!! ≤ , !! ≤≤ 0a , ''a !! ≤≤ 0  and )(J)'(J)(J)'(J 00 !!!! −=−  

we have )',,a()',,a( 00 !!!!     ΠΠ ≤ . 

Theorem 4. On a finite distributive semilattice L , a monotone function ),a(   !0π , gen-

erated by a quasilinear function according to the relation (5) has antimonotone increments. 

                                                           
2  We have in mind a semilattice, containing with any two elements also their infimum, and not a lattice, since if 

'LL ⊆ , where 'L  is a lattice (for example, W2 ), then the infimum of Ly,x ∈  is not necessarily equal to 

yx ∧  (in particular, to YX ∩ , if W'L 2= ). 
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Monotone systems with antimonotone increments have been considered in [9], where the 

concept of their local transformations is investigated. In the case of monotone systems on a 

Boolean, this theorem establishes the quasilinearity of certain functions, arising in the theory 

of zero-sum two-person games. 

Definition 3. A matrix 
N

NjiaA  = , Wj,i ∈ , is said to be stable if it is symmetric and 

WH ⊆∀  it has a saddle point 

 jiHjHijiHjHi
aa   minmax  max min 

∈∈∈∈
= . (7) 

Definition 4. A monotone system F,,W 0π  is said to be a quasilinear if F  is quasilin-

ear function. 

Corollary of Theorem 3. A monotone system F,,W 0π  is quasilinear if and only if the 

functions 0π  and F  can be represented in the form 

 jiHj
a)H,i(  max

∈
=0π , (8) 

 jiHjHi
a)H(F  max  min 

∈∈
= , (9) 

where jiaA  =  is a stable matrix. 

Theorem 5. In order that a matrix A  be stable it is sufficient that 

∅≠∩∀ ]a,a[]a,[al,k,j,i jliljki k     :    . 

Theorem 5 is a particular case of Shapley’s theorem [10], which asserts that the indicated 

conditions are sufficient that the payoff matrix of a zero-sum two-person game should have a 

saddle point. 

Example 3. Assume that the matrix jiaA  =  is such that ( )jjiiji a,aa    max =  and the 

collection { }NNa,...,a    11  of diagonal elements is arbitrary. Then the matrix A  is stable and the 

function iiHi
a)H(F   max

∈
=  is quasilinear. 
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Example 4. We consider an undirected graph G , for which W  is the set of its vertices. 

By E  we denote the set of its edges. Assume that it has the following two properties: 

a) the set W  is partitioned into two subsets *H  and *HW \ , such that 
*Hj,i ∈∀ : ( ) Ej,i ∈ ; *HWj,i \∈∀ : ( ) Ej,i ∉ ; 

b) G  does not contain four-vertex subgraphs 3 of the form given in Fig. 1. 

It is easy to show that -10. stable matrices are the adjacency matrices of such graphs. 

The problem of the description of the semilattice of all kernels of monotone systems, i.e., 

the determination of the systems generators of the semilattice of those WH * ⊆ , such that 

( )WH)H(F)H(F * ⊆=max , where F  is a quasiconcave function, is sufficiently complex. 

Presently, no polynomial algorithm is known for its solution in the general form. However, 

for the description of the semilattices of the kernels of a quasilinear monotone system on can 

give a polynomial algorithm. 

Let F,,W π  be a quasilinear monotone system. We construct the matrix jiaA  =  from 

the function F  in the above-described manner. From this matrix, in accordance with the cor-
ollary to Theorem 3, we construct a monotone system jiHj

a)H,i(   max
∈

=0
1π  and its dual 

jiHj
a)H,i(   min

∈
=0

2π  . Let Hi *H ∈  be an element on which the value 

 )H,i()H,i()H(F *H*H
0
2

0
1 ππ == . 

Theorem 6. If 0H  is a kernel of the monotone system F,,W 0
1π , then also any 

]H,i[H
*H

0
0∈  is its kernel. An algorithm for the determination of the rights and left end-

points of the intervals ]H,i[
*H

0
0  consists in the successive determination of the elements 

*H
i 0  with the aid of the procedure of the separation of a maximal kernel of the monotone sys-

tem and the passage to the subset { }
*H

iH 0
0 \ . 

                                                           
3  A subgraph of a graph is an arbitrary subset of vertices from W , together with edges, for each of which both 

incident vertices belong to the given selected subset of vertices. 
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Everything that has been said is valid also for monotone systems on an arbitrary distribu-

tive semilattice. 

On nondistributive semilattices it is easy to construct examples of functions which cab be 

represented in the form (6), but are not quasilinear. These are, for example, the functions 

ℜ→5Mf :  and ℜ→5Ng : , where 00 =)(f , 1=)a(f , 3=)b(f , 4=)c(F , 2=)I(f ; 

00 =)(g , 4=)a(g , 1=)b(g , 3=)c(g , 2=)I(g . 

Theorems 1-3 show that the distributivity property of semilattice allows the construction 

on it of an exact analog of monotone systems on a Boolean. On the other hand, the possibility 

of the construction of such an analog appears as a distinctive characterization of distributiv-

ity. 

3. Convex Analysis on Semilattices 

The set of the subsemilattices of an arbitrary semilattice forms a convexity in the sense of 

axiomatic definition [11]. The quasiconvex functions form the basis of convex analysis on 

semilattices. 

Definition 5. A subsemilattice 'L  of an arbitrary semilattice L  is said to be separating if 

'LL   −  is a semilattice. 

Example 5. Assume that L , as in Example 1, is a set of vectors, closed with respect to 

∨ , and assume that L'L ⊂  is defined by the system of inequalities ii bx ≤≤0 , n,i 1= . Then 

'L  is separating semilattice. 

The following theorems show that the separating semilattices, in the problem of optimi-

zation of quasiconcave functions of sets on semilattices, play the role of semispaces from the 

convex analysis of functions on the Euclidean space. 

Theorem 7. For an arbitrary semilattice L  and any of its nonintersection subsemilat-

tices 1L  and 2L  ( ∅=∩ 21 LL ) there exists a separating semilattice 'L  such that 'LL ⊆1 , 

'LLL   −⊆2 . 
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Theorem 8. An arbitrary subsemilattice of an arbitrary semilattice can be represented in 

the form of the intersection of separating subsemilattices. 

Theorem 9. The subsemilattices of an arbitrary semilattice, and only them, can be repre-

sented in the form of level sets 

 { }u)x(FLxLu ≥∈=   

of quasiconcave functions. The separating subsemilattices of an arbitrary semilattice, and 

only them, can be represented in the form of level sets of quasilinear functions. 

Corollary 1. Let 1L  and 2L  be two nonintersecting subsemilattices of semilattice L  and 

assume that some function F  takes the value 1u  on the elements of 1L  and the value 2u  on 

the elements of 2L . Then F  can be extended to a quasilinear function to the entire semilat-

tice L . 
Corollary 2. Let 1

1 F,,W π , 2
2 F,,W π  be two monotone systems such that the corre-

sponding families of subsets, on which the functions 1F  and 2F  assume a maximal value 

(kernels), do not intersect. Then one can construct a quasilinear function F  such that all the 
kernels of 1F  are the kernels of F  and all kernels of 2F  are kernels of ( )F− . 

Theorem 10. On any semilattice the quasiconcave functions, and only them, can be rep-

resented in the form 

 kKk
FF  min

∈
= , (10) 

where all kF  are quasilinear functions, while K  is some set of indices. 

Theorems 7-9 are valid also for infinite semilattices. 

Theorem 11. The subsemilattices of a distributive semilattice L , and only them, can be 

represented in the form 

 " !
Ii

ii ],a[L
∈

−    { }0∪∈∈∀ )(JaIi ii ! : ; (11) 

here I  is some set of indices. 

Theorem 12. The separating subsemilattices of a distributive semilattice, and only them, 

can be represented in the form 

 " !
Ii

ii ],a[L
∈

−   , (12) 

where { }Iii ∈  !  is a chain and { }0∪∈∈∀ )(JaIi ii ! : . 
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Theorem 11 is the analog of Rival’s theorem [12] on the structure of the sublattices of a 

distributive lattice. 

We introduce an elementary quasilinear function on a semilattice ( )l(Ja  ∈ : 

 




>∉
∈

=
. ;  , 

,  , 

122

1

uu],a[xu
],a[xu

)x(F
!

!
 (13) 

Corollary (to Theorem 10). Every quasiconcave function on a distributive semilattice is 

the minimum of elementary quasilinear functions. 

Corollary (to Theorem 12). Every co-indecomposable element of the lattice of subsemi-

lattices of a distributive semilattice L  is the level set of some elementary quasilinear func-

tion. 

Example 6. We consider special quasilinear characteristic functions on W2 , defined by 

separating semilattices of the form 

 { } { } ]jW,i[L W    \−= 2 . 

They can be computed by the formula 

 
{ } { }



 ∈−

=
otherwise.          

,    if      ,
 1

1 ]jW,i[H
)H(F ji

\
 

We construct the function 

 ( )       ji,Wj,i)H(Fcmin)H(F jiji ≠∈⋅= , (14) 

where jic    is an arbitrary matrix ( )0≥jic   . It is easy to show that the function (14) is 

quasi-flowlike [8] and, therefore, it can be written in the form jiHWjHi
c)H(F   max max

\∈∈
= . Such 

functions are important from the point of view of applications since with their aid one models 

the partition of an analyzed set [13]. 

We say that a semilattice L'L ⊆  is dense if 'Ly,x ∈∀   such that yx <  there exists a 

maximal chain in L  such that yx...xxx k =<<<= 21 , 'Lx,...,x k ∈1 . 
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A semilattice L  is said to be interval-nonclosed if no nonempty open interval in it is a 

semilattice, i.e., 

 { } ybay,x]y,x[b,ayx =∨∈∃<∀  :     \ . 

Theorem 13. In order that each separating subsemilattice 'L  be dense in L , it is neces-

sary and sufficient that L  be interval-nonclosed. 

Obviously, a Boolean is an interval-nonclosed semilattice. It is easy to show that the 

property of being interval-nonclosed is possessed also by partition lattices and by geometric 

lattices (this follows from the existence of relative complements in the lattices of the men-

tioned types [14]). 

The separating semilattices of a Boolean are dense also in a certain stronger sense. 

Theorem 14. For any separating semilattice of sets we have: LH,H ∈∀ 21  there exists a 

sequence of sets { }kQ,...,Q1 , LQi ∈ , k,i 1= , such that 11 QH = , kQH =2  and 

11 =+   -  ii QQ , 11 −= k,i . 

Appendix 1. Summary of the necessary results from lattice theory 

Definition 1 [14]. A set L , with a binary operation defined on it, is said to be a semilat-

tice if LyxLy,x ∈∨∈∀  :  and the following properties hold: 

1) idempotence: xxxLxA =∨∈  : , 

2) commutativity: xyyxLy,x ∨=∨∈∀  : , 

3) associativity: ( ) ( ) zyxzyxLz,y,x ∨∨=∨∨∈∀  : . 

Definition 2 [14]. A set L , with two binary operations ∨  and ∧  defined on it, is said to 

be a lattice if Lyx,LyxLy,x ∈∧∈∨∈∀   : , the operations ∧  and ∨  are idempotent, com-

mutative, associative, and the absorption laws are satisfies: ( ) xyxxLy,x =∧∨∈∀  : ; 

( ) xyxx =∨∧ . 
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Definition 3 [14]. A lattice is said to be a distributive if Lz,y,x ∈∀  : 

( ) ( ) ( )zxyxzyx ∧∨∧=∨∧ . 

Definition 4 [14]. A partial order on a semilattice (and on a lattice) is introduced in the 

following manner: yyxyx =∨⇔≤ . 

Definition 5. By a chain in a lattice (semilattice) L  we mean an ordered set in which any 

two elements are comparable. A chain in a finite lattice (semilattice) is said to be maximal if 

each of its elements is covered by the following one: ( )  bxbxa&baba =⇒≥>≥⇔# . 

Definition 6 [14,15]. A semilattice L  is said to be distributive if Lz,y,x ∈∀  , such that 

yxz ∨≤ , there exists Lb,a ∈ , possessing the property that xa ≤ , yb ≤ , zba =∨ . 

The importance of the construction of distributive lattices and semilattices is due to the 

following circumstance. The distributive lattices, and only they, are isomorphic to rings of 

sets, i.e., for distributive lattice L  there exists W  (finite if L  is finite) and a correspondence 

W)x(Hx ⊆→ , such that )y(H)x(Hyx =⇔=  and )y(H)x(H)yx(H ∪=∨ , 

)y(H)x(H)yx(H ∩=∧  [14]. In other words, the operations ∨  and ∧  are the analogs of 

∪  and ∩ . The distributive semilattices, and only they, are isomorphic to semirings of sets, 

i.e., the above-introduced mapping )x(Hx →  does not have the last of the above-

enumerated properties and if Ly,x ∈  there exists a largest Lz ∈ , such that xz ≤  and yz ≤ , 

then )y(H)x(H)z(H ∩=  [16]. 

There exists another distinctive particularity of distributive lattices and semilattices. A 

lattice is distributive if and only if for any two of its elements x  and y  there exists a largest 

z  such that xz ≤  and yz ≤ , and it does not contain as a retract either 5N  or 5M  4 [15] (see 

fig.2). 

                                                           
4  A semilattice 1L  contains as a retract – a semilattice 2L  if there exists mapping 211 LLf → :  and 

122 LLf → : , preserving the operation ∨ , i.e. )y(f)x(f)yx(f iii ∨=∨ , 21,i = , such that 

21 ff $  is the identity mapping. 
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Definition 7 [14]. An element x  of a semilattice L  is said to be irreducible if from 

bax ∨= , Lb,a ∈  there follows ax =  or bx = . An element 0  is called the zero of a semi-

lattice if x≤0  for all Lx ∈ . 5 The set of all irreducible elements without 0  will be denoted 

by )L(J . In addition, { }   xa)L(Ja)x(J ≤∈= . 

Definition 8 [14]. By the complement x  of an element x  of a semilattice L  we mean its 

complement with respect to 11  : =∨ xx . The element 1 is called the identity of a semilattice 

if x≥1  for all Lx ∈ . An element x  is said to be meet-irreducible if bax ∧= , Lb,a ∈  im-

ply ax =  or bx = . 

Definition 9 [14]. A lattice R  has relative components if yx ≤∀  , ]y,x[z ∈∀  , 

yzz]y,x[z =∨∈∃ 11  : , xzz =∧ 1 . 

Definition 10 [14]. By a -∨ homomorphism we mean a mapping of a semilattice into a 

semilattice, preserving the operation ∨ . 

Appendix 2 

The proof of Theorem 1 is similar to the proof of the corresponding theorem of [8] since 

for distributive semilattices we have: )y(J)x(J)yx(JLy,x ∨=∨∈∀  :  . 

Proof of Theorem 2. We precede the proof by two lemmas. 

                                                           
5 A distributive semilattice always contains 0  [14,15]. 
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LEMMA 1. Let L  be a semilattice containing 5N  as a retract. Then there exists 

)L(Jx ∈ , such that )b(Jx ∈ , but )c(J)a(Jx ∪∉ . 

Proof. Let 51 NLf → : , LNf →52  :  be -∨ homomorphism and let 21 ff $  be the iden-

tity mapping. We identify 5N  with its image L)N(f ⊆52 ; then 1f  is identified with the 

mapping 5NL→ : ϕ , where ϕ  is a -∨ homomorphism and the restriction of ϕ  to LN ⊆5  is 

the identity. Let 5Nx ∈ , xy ≤ . Since )y(x)y()x()yx()x(x ϕϕϕϕϕ ∨=∨=∨== , we 

have x)y( ≤ϕ . Therefor, x)x(Jyy )( =∈∨    ϕ , for 5Nx ∈ . We consider 

)( )a(J)b(Jyyx −∈∨=   ϕ . Clearly, bx ≤ . If bx < , then, due to the fact that 

a)y()a(Jy <∈∀ ϕ :  , we have )( b)b(Jyy <∈∨    ϕ , which is not possible. Thus, bx = . 

Assume that the assertion of the lemma is false. Then )c(J)a(J)b(J ⊆− , i.e., 

c)c(Jyyxb )( =∈∨≤=   ϕ , which is not true. The obtained contradiction proves the 

lemma. ! 

LEMMA 2. Let L  be a semilattice containing 5M  as a retract. Then there exists 

)L(Jx ∈ , such that )b(Jx ∈ , but )c(J)a(Jx ∪∉ . 

The proof is similar to that of the previous lemma. 

Assume now that L  is a semilattice, containing for any two elements their greatest lower 

bound, and that L  is not distributive. Then L  contains 5N  or 5M  as a retract. Let *x  be the 

element, whose existence is asserted in lemmas 1 and 2. We set *xx ≥∀  , 

)y,p()x,x()y(Jp * ππ <∈∀  :   and the function π  is monotone. We construct a function F  

according to the rule (4). We obtain: )I,x()I(F *π≤ , )I,x()c(F),a(F *π> , since 

)c(J)a(Jx* ∪∉ . Thus, ( ))c(F),a(F)ca(F)I(F  min<∨= , i.e., F  is not quasiconcave. 

The theorem is proved. ! 

Proof of Theorem 3. We show that a quasilinear )x(F  can be represented in the form 

  )b,a(g)x(F
)x(Jb)x(Ja
 max min

∈∈
= , (A.1) 
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where )ba(F)b,a(g ∨= . Let ab  be an element of )x(J  on which the maximum of )b,a(g  

is attained. We denote the right-hand side of (A.1) by )x(R . Then, in accordance with (1), 

we have )x(F)ba(F)x(R a ≤∨=min . Let )x(F)x(R < . In this case there exists )x(Ja ∈  

such that )x(F)ba(F)x(Jb <∨∈∀  :  , and therefore, on the basis of (2) we have 

( ) )x(F)x(Jbba(F)x(F <∈∨≤   max . The obtained contradiction proves that FR = . In 

similar manner one proves the representation of F  in the form of a maximin function. 

We prove that if L  is distributive, then a function of the form (6) is quasilinear. The 
function )b,a(g)x,a(

)x(Jb
 max

∈
=1π  is monotone with respect to x , )x(Ja ∈ . By virtue of 

)y(J)x(J)yx(J ∪=∨ , we have )y(Ja)x(Ja)yx(Ja ∈∨∈⇒∨∈ . 

Assume, for the sake of definiteness, that 

)x(Ja)yx,a()yx(F ∈=∨=∨ 11π min arg arg  and let 

)yx(F)yx,a()x,a()x,a()x(F ∨=∨≤≤= 111121 πππ . Thus, the function )x(F  is quasi-
concave. Similarly, from the fact that )b,a(g)x,a(

)x(Jb
 min

∈
=2π  is antimonotone with respect 

to x , there follows that quasiconvexity of the function )x(F . The theorem is proved. ! 

Proof of Theorem 4. We consider the representation (6) of a quasilinear function. In ac-

cordance with this representation, we have )b,a(g),a( max  =!0π , )(Jb !∈ . We note that 

0≥)'x,x,a(Π  )(Ja !∈∀  , L'x,x ∈ , 'xxa ≤≤ . 

Let 0>−=
∈∈

)b,a(g)b,a(g)'l,l,a(
)'(Jb)(Jb
 max max  

!!
Π . This means that 

 

( )
( )

).',a()',a(

)'(Jb)b,a(gb

)(J)'(J)(J)'(J)(Jb)b,a(gb
*

*

0
00

0

00

!!

!

!!!!!

ππ =

∈=

−=−∈∈=

,  max  arg

i.e.,,  max  arg

 (A.2) 

At the same time, from the monotonicity there follows that 

  ),a(),a( 0
00 !! ππ ≥ . (A.3) 

From (A.2) and (A.3) we have 

  )',,a()',,a( 00 !!!!     ΠΠ ≤ . 

In the case 0=)',,a( !!   Π , the validity of the required condition is obvious. The theorem 

is proved. ! 
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Proof of Theorem 5. By Shapley’s theorem [10], for the existence of a saddle point for a 

matrix it is sufficient that each of its 22×  submatrices should have a saddle point. Now, 

Theorem 5 follows from the following lemma, proved by straightforward verification. 

LEMMA 3. In order that 22×  matrix A  should have a saddle point, it is necessary and 

sufficient that ∅≠∩ ]a,a[]a,a[ 12212211     . 

Proof of Theorem 6. In accordance with the definition of a kernel and the corollary to 

Theorem 3, we have 

  )H,i()H,i()H(F)H(F
Hi

*
HWH

00
2

00
2

0
00 ππ  max max

∈⊆
=== . 

Let 0
0 HHi*

H ⊆∈ . By virtue of the antimonotonicity of the function 0
2π : 

  )H(F)H,i()H,i()H,i()H(F *
H

*
HHi

000
2

0
2

0
2 00 =≥≥=

∈
πππ max , 

i.e., also H  is a kernel. The theorem is proved. ! 

Proof of the Theorem 7. 
Let LL ⊆0  and 0LLx −∈ . Then by { } { }000 LxxL]x,L[ ∈∨∪∪= !!     we denote the 

smallest subsemilattice L , containing 0L  and x . The proof is based on the following lemma. 

LEMMA 4. Let ∅=∩ 21 LL , ( )21 LLLx ∪−∈ . The either ∅=∩ 21 L]x,L[  or 

∅=∩ 12 L]x,L[ . 

Proof. We assume the opposite, i.e., ∅≠∩ 21 L]x,L[  and ∅≠∩ 12 L]x,L[ . Since 

∅=∩ 21 LL , there exists 11 L∈! , 22 L∈!  such that 21 Lx ∈∨! , 12 Lx ∈∨! . Let 

xa ∨∨= 21 !! . Since ( ) 21 !! ∨∨= xa  , we have 2La ∈  and since ( ) 12 !! ∨∨= xa  , we have 

1La ∈ , i.e., 21 LLa ∩∈ . Thus, we obtained a contradiction. The lemma is proved. ! 

We prove the theorem by induction on ( )  21 LLLk ∪−= . If 0=k , then the assertion of 

the theorem is obvious. Assume that the theorem holds for all mk <  and we prove that it 

holds for mk = . We consider ( )21 LLLx ∪−∈   and assume, for the sake of definiteness, 

that ∅=∩ 21 L]x,L[ . We set 11 'L]x,L[ = , 22 L'L = . The cardinality ( ) m'L'LL <∪−   21  

and, therefore, there exists L'L ⊆  such that 'L'LL ⊆⊆ 11  and 'LLL'L −⊆= 22 . The theorem 

is proved. ! 
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Proof of Theorem 8. Let L  be a semilattice, let 'L  be a subsemilattice in it, and let 

'Lx ∈ . Then, by Theorem 7, there exists a separating semilattice xL  such that xLL ⊆ , 

xLx ∉ . The assertion of the theorem follows from the equality 

  ( )'LxL'L x ∉=    % . (A.4) 

Proof of the Theorem 9. The facts that the level set of a quasiconcave function is a semi-

lattice and that the level set of a quasilinear function is a separating semilattice are suffi-

ciently obvious. The function 

  




∉
∈

=
0

0

0
1

0 Lx
Lx

)x(FL for    
,for     
 

is quasiconcave on any semilattice 0L  and quasilinear if 0L  is separating. Its level set 

{ }   1
0

≥∈ )x(FLx L . Theorem is proved. ! 

Proof of Theorem 10. a) Assume that the function )x(F  can be represented 

in the form (10). Then 

 ≥∨=∨=∨∈∀
∈

)xx(F)xx(F)xx(FLx,x
kkKk 21212121 0 min :   

 ( ) ( ))x(F,x(F)x(F),x(F
kk 2121 00  min min ≥≥ , i.e., 

the function )x(F  is quasiconcave; 

b) Let F  be a quasiconcave function on a finite semilattice of L . Since L  is finite, it fol-

lows that F  can take a finite set of values su...uu <<< 21 . @ 

We consider the semilattices { }pp u)x(FLxL >∈=   , 11 −= s,...,p . By Theorem 8, we 

represent each pL  as intersection of separating semilattices: ( ).JkLL pkpp ∈=     %  

For each pJk ∈  we introduce the function 

  




∈

∉
=

. ,
, ,

 

 

kps

kppk
p Lxu

Lxu
)x(ϕ  (A.5) 

                                                           
@  In Boolean case of monotonic game, see http://www.datalaundering.com/download/monogame.pdf, this se-

ries was called a spectrum. 

http://www.datalaundering.com/download/monogame.pdf
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The functions (A.5) are quasilinear. This follows from the fact that if kpLx,x  ∈21  or 

kpLx,x  ∉21 , then )x()xx( i
k
p

k
p ϕϕ =∨ 21 , 21,i = . We consider the function 

  )x()x(r kpJks,...,p p
  min  min ϕ

∈−=
=

11
. (A.6) 

Let Lx ∈  and qu)x(F = , sq < , i.e., qLx ∉ . Consequently, k qLx ∉  for some k  and 

q
k
q u)x( =ϕ . Thus, by virtue of (A.6) we have qu)x(r ≤ . We assume that )x(F)x(r < . 

Then there exists m
k
m u)x( =ϕ , qm < . But this means that kmLx  ∉  and, therefore, also 

mLx ∉ , i.e., qm uu)x(F ≤≤ . The obtained contradiction proves that ).x(F)x(r =  

The case sq =  is considered in similar manner. Relation (A.6) is the desired expansion 

(10) for the quasiconcave function. The theorem is proved. ! 

Proof of Theorem 11. We show that a set of the form (11) is a semilattice. Let 

],a[L'Ly,x ii !"   −=∈  and let 'Lyx ∉∨ . Then ],a[yx ii ! ∈∨  for some i . Since 

yxai ∨≤ , by the distributivity property we have 'y'xai ∨= , where x'x ≤ , y'y ≤ . But 

)L(Jai ∈ , from where 'xai =  or 'yai = , i.e., either xai ≤  or yai ≤ . This means that ei-

ther 'Lx ∉  or 'Ly ∉ , since ily,x ≤ . Thus, (11) is a semilattice. 

Assume that L'L ≤  is a semilattice and 'L∉! . We prove that there exists )L(Ja ∈ , such 

that ∅=∩ 'L],a[ ! . Indeed, suppose this is not so. Then )(Ja !∈∀   'L],a[ aa ∈∈∃ !!!  :   . 

We consider a' !!! ∨= . Since all 'La ∈! , we have 'L' ∈! , but on the other hand, 

( ))(Ja' !! ∈∨≥  and !! ≤' , i.e., 'L' ∉= !! , which is contradiction. For each 'L∉!  we denote 

by )(I !  the set of { }0 ∪∈ )L(Ja , such that ∅=∩ 'L],a[ ! . 

We consider a semilattice of the form (11) 

  ],a[L"L
)(IaL

!""
!!

  
∈∈

−= . (A.7) 

If "Lx ∉ , then ∅=∩∈ 'L],a[x ! , 'Lx ∉ . If 'Lx ∉ , then in accordance with (A.7) we 

have "Lx ∉ . Thus, "L'L = . The theorem is proved. ! 
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Proof of Theorem 12. We show that (12) is a separating semilattice. It is sufficient to 

show that ],a[ ii !"    is a semilattice. Let ],a[x 111 ! ∈ , ],a[x 222 ! ∈  and 21 !! ≤ . Then 

221 !≤∨ xx , 221 axx ≥∨ , i.e., ],a[xx 2221 ! ∈∨ , which is what we intended to prove. 

Conversely, let 0L  be a separating semilattice. We represent it in the form (11). Since 0L  

is separating, for 21 p,p ∀ , ],a[x pp 111 !  ∈∀ , ],a[x pp 222 !  ∈∀  we must have 021 Lxx ∉∨ . 

From here it follows that the interval ],aa[ pppp 2121
!! ∨∨   must be contained in 0LL − . 

Making use once again of the fact that 0L  is separating, we obtain: either ],a[ ppp 211
!! ∨  or 

],a[ ppp 212
!! ∨  is a subset of 0LL − . Removing from the expansion (11) the intervals that 

are entirely included in others, we obtain that for any 21 p,p  the elements 
1p!  and 

2p!  are 

comparable, i.e., { }Iii ∈   !  is a chain. The theorem is proved. ! 

Proof of Theorem 13. a) Necessity. Assume that L  is not interval-nonclosed, i.e., there 

exists an open interval ( ) { }y,x]y,x[y,x \=  is a semilattice. Also the set { }y,x  is a semilat-

tice and, therefore, there exists a separating L'L ⊆  such that ( ) 'Ly,x ⊆  and 'Ly,x ∉ , where 

'LL −  is also separating. In a maximal chain { }    k,ixi 1=  such that xx =1 , yxk =  we can 

have only the elements of ]y,x[ , but ( ) ∅=−∩ 'LLy,x , i.e., 'LL −  is not dense. 

b) Sufficiency. Let L  be interval-nonclosed, 'Ly,x ∈  and yx < , where 'L  is a separat-

ing subsemilattice of L . We show that for them there exists a connecting sequence. We ex-

tend { }y,x  to a maximal chain in 'L . Let b,a  be two adjacent elements of this chain, ba ≤ , 

'Lb,a ∈ . If ( ) ∅=b,a , then ab # . Let ( ) ∅≠b,a  and ( )b,ac ∈ . Since the chain is maximal, 

we have 'Lc ∉ . By virtue of the interval-nonclosed property, ( ) bcdb,ad =∨∈∃  :  . Since 

( )b,ad ∈ , we have 'Ld ∉  and, therefore, also 'Lbcd ∉=∨ , which is a contradiction. Thus, 

the connecting sequence has been constructed. If y,x  are incomparable, then it is sufficient 

to consider two connecting sequences: from x  to yx ∨  and from y  to yx ∨ , since 

'Lyx ∈∨ . The theorem is proved. ! 
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Proof of Theorem 14. First we prove the following lemma. 

LEMMA 5. Let WL 2⊆  be a separating semilattice and let LG,H ∈ , GH ⊆ . Then the 

elements of the set HG\  can be ordered, { }ki,...,iHG   1=\ , such that all the sets 

{ }pi,...,iH   1∪ , kp ≤ , belong to L . 

Proof. (by induction on   HGk \= ). If 1=k , then the assertion is obvious. Assume that 

the assertion holds also for 1−=mk ; we prove it for mk = . We show that among the sets 

{ }iH  ∪ , HGi \∈ , at least one belongs to L. Indeed, suppose this is not so. Then 
{ } LiHHGi ∉∪∈∀   :  \  and, since L  is separating, we have { }( ) LiHG

HGi
∉∪=

∈
  

\
" , contra-

diction. We denote by 1i  an element HG\  such that { } LiH ∈∪ 1 . By the induction hy-

pothesis, 1−m  elements of { }( )  1iHG ∪\  can be ordered as { }mi,...,i    2 , so that all 

{ }pi,...,iH   1∪ , m,p 2=  belong to L . The lemma is proved. 

For the proof of the theorem we mention that the set of kernels of a quasilinear function 

is a separating semilattice (see Theorem 5); we denote it by L . Let LH,H ∈21 . Then 

LHHH ∈∪= 21 . In accordance with Lemma 5, we order the elements of ki,...,iHH   : 112 \  

and mj,...,jHH   : 121 \ . We set 11 HQ = , { }111 −∪= gg i,...,iHQ   , k,g 2= ; HQk =+1 , 

{ }111 +−++ = gmgk j,...,jHQ  \ , m,g 1= ; 21 HQ mk =++ . By virtue of Lemma 4, by construction 

{ }   11 ++∈∀ mk,...,g : LQg ∈ ; 11 =−+         gg QQ . The theorem is proved. ! 
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