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A function (a functional) defined on a set, different from ordinary additive functions 

(measures), discloses an optimal value  

 )x(fmax)X(F
Xx

 
∈

=  (1) 

of the extremization problem considered as a function of a feasible set. 

The function F  in (1), as well as its “generator” – the function f , might be 

non-numeric, but ordered, i.e., to take the values from arbitrary linear ordered set L . 

However, the ordered functions, produced by the extreme finding problems (1), inherit 

similar additive properties. Further relaxation of these properties brings about also an 

exceptional, in similar or distinct sense, classes of set functions, which constitute the 

subject of current report. 

In order to avoid some technical obstacles let restraint it by finite case. Further, once 

and for all UX ⊆ , where U  – is fixed finite set. Let F  be a certain ordered function on 
U2 . We say that F  satisfies the ordered additive condition, if 

 { }   )"X(F),'X(Fmax)"X'X(F =∪  2 (2) 

for each U"X,'X ⊆ . 

Theorem 1. To be an ordered additive function for F  it is necessary and sufficient 

that it can be represented in the form of (1). Herein, by the necessity prevails that 

{ } )x(F)x(f  = , Ux ∈ . 

                                                           
1  An extended thesis’s variant of the report at the “All Union Seminar on Optimization and its 

Implementations,” Dushanbe, 1986, pp. 151-152. 
2 Later called a quasi-additive condition, trans. remark. 
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Keeping in mind this theorem, we will call each function arranged by (1) with certain 

)x(f  as ordered additive. Now, it is possible to consider more general case, when the 

range of F  definition not necessarily extends to all UX ⊆ , but to certain subfamily 
U2⊆X . In particular, F  might be not defined on single element subsets. Consider 

following constraint: for all X∈X  and { } X⊆νX , such that 
ν

ν XX ⊇! , holds 

   )X(Fmax)X(F νν
≤ . (3) 

Theorem 2. To be an ordered additive function for )X(F , defined on some 
U2⊆X , it is necessary and sufficient the constraint (3) fulfillment. 

Further, for simplicity, let F  definition range extends over all proper subsets 

UX ⊂ . 

We call the function )X(F  monotone, if 

 )"X(F)'X(F ≤  by "X'X ⊆ , (4) 

and let call )X(F  as ! -quasiconvex, if  

 { })"X(F),'X(Fmax)"X'X(F  ≤∪  (5) 

for arbitrary U"X,'X ⊆  (one can interpret this and all succeeding versions of 

“quasiconvex” property as varieties of abstract quasiconvexity in accordance with [1] ). 

Theorem 3. The function )X(F is an ordered additive function if and only, if it is a 

monotone and ! -quasiconvex. 

The proposition of the theorem is clear because the equality in the quasi-additive 

condition (2) is equivalent to the conjunction of two inequalities: a sub-additive condition 

(5) (i.e., ! -quasiconvexity) and the super-additive condition: 

 { })"X(F),'X(Fmax)"X'X(F  ≥∪  (6) 

for arbitrary U"X,'X ⊆  – what is equivalent to monotonicity (4). 
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We call )X(F  hyper-additive, if it is composed in the form of 

 )S(Gmax)X(F
XS

 
⊆

=  (7) 

for each UX ⊆ , where )S(G  – certain ordered function (”generator”) on U2 . 

Lemma 1. Hyper-additive )X(F  property is equivalent to its monotonicity. 

Theorem 4. In consideration of )X(F  to be an ordered super-additive (sub-

additive), it is necessary and sufficient for F  to be composed in the form of 

 )S,x(gmaxmax)X(F
Xx

  
XS⊆∈

=  (8) 

or, correspondingly 

 )S,x(gminmax)X(F
XXx

  
S⊆∈

=  (9) 

for certain function g  on UU 2× . 

Notice 1. In semi-additive representations (8) (or (7)) for monotone, and (9), for 

! -quasiconvex function F , we might set up: 

)S(F)S(G)S,x(g ≡≡  – in (7) and (8), )Z(Fmin)S,x(g
SZx:Z
 

⊆∈
≡  – in (9). 

Let call F  " -quasiconvex, if 

 { })"X(F),'X(Fmax)"X'X(F  ≤∩ . (10) 

Notice 2. Function )X(F  " -quasiconvexity is equivalent to function 

)XU(F)X(F c \≡  ! -quasiconvexity. 

Theorem 5. For the function )X(F  to be " -quasiconvex it is necessary and 

sufficient that it can be represented in the form of 

 )z,S(gmaxmax)X(F
XUzXS
  

\∈⊆
=  (11) 

with certain function g  on UU ×2 . 
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Corollary (from Theorem 5 taking into account notice 2): ! -quasiconvexity of 

function F  is equivalent to its representation capability in the form 

 )Z,x(gmaxmax)X(F
UZXx

  
X\⊆∈

=  (12) 

for certain function g  on UU 2×  (concurrently with the representation (9)). 

Let call F  a "!, -quasiconvex, if it is at the same time ! - and " -quasiconvex. 

Theorem 6. For the function )X(F  to be "!, -quasiconvex it is necessary and 

sufficient that it can be represented in the form of 

 )y,x(gmaxmax)X(F
XUyXx
  

\∈∈
=  (13) 

with certain “flow” function )y,x(g  on UU × . 

Notice 3. In the representations (11), (12) and (13) it might be established, 

accordingly, that 

 )Q(Fmin)TU(Fmin)z,S(g
SQ,Qz:QSUTz:T
  

⊇∉⊆∈
== \

\
, (14) 

 )QU(Fmin)T(Fmin)Z,x(g
ZQ,Qx:QZUTx:T

\
\

  
⊇∉⊆∈

==  (15) 

and )T(Fmin)y,x(g
Ty,Tx:T
 

∉∈
= . (16) 

Lemma 2. Every monotone (and only its like) functions F  may be represented in the 

form of following decomposition along the system { } N)x(g ∈νν    of quasi-additive 

functions on U : 

 )x(gmaxmin)X(F
XxN νν

  
∈∈

= . (17) 

By virtue of the decomposition (17), as a corollary from theorems 4, 5, we obtain 

further equivalent functions representations. 
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Theorem 7. Following decompositions are valid: 

1) For monotone (ordered super-additive) function F : 

 )y,x(gmaxmaxmin)X(F
XyXxN νν

   
∈∈∈

= ; (18) 

2) For ! -quasiconvex (ordered super-additive) function: 

 )y,x(gminmaxmax)X(F
XyXxN νν

   
∈∈∈

=  (19) 

or )y,x(hmaxminmax)X(F
XxMXUy µµ

   
∈∈∈

=
\

; (20) 

3) For " -quasiconvex function: 

 )y,x(gmaxminmax)X(F
UyNXx νν

   
X\∈∈∈

=  (21) 

– by means of certain collections of functions νg  ( µh ). 

Notice 4. The framework to set an ordered function L:F U →2  is adequate to 

setting a family { } L∈ααX of its level sets { }  αα ≤⊆= )X(F:UXX . One might 

examine: 

1) that monotonicity of F  is equivalent to every αX  set-theoretic shrinking result to 

be a member in its member-sets: 

 αX∈X , αX∈⇒⊆ SXS ; (22) 

2) ! -quasiconvexity (either " -quasiconvexity) is equivalent for every αX  set-

theoretic union (consecutively for an intersection) result to be a member in its 

member-sets: 

 
, ly,(according α

αα

X

XX

∈∩⇒
∈∪⇒∈
"X'X

"X'X"X,'X
 (23) 

i.e., equivalent for αX to be a semilattice), therefore "!, -quasiconvexity of F  is also 

equivalent for all αX  to be a lattice; 
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3) for the function F  to be a quasi additive it is equivalent that each αX  constitutes 

a Boolean: 

 { }αα XX:X ⊂=  X , where UX ⊆α . (24) 

In particular case of ordered functions L:F U →2  for ( )10,L  = , i.e., for the logical 

set functions, the framework for every such function is adequate to the set 0X  “zeros” 

settlement, and herein the structure of such sets establishment emerge from F  properties. 

As an example of the above described ordered functions properties realization, we 

point to the “monotonic system” dataset model, which in the primitives of current work, 

according to J. Mullat [2] description, is a scalar function )X(F  of sets X  defined on 

all subsets X  within finite set of objects U . Function F  definition is given by: 

 )X,x(min)X(F
Xx

π 
∈

= , (25) 

where )X,x(π  – certain functions used in classification problems, whereas value 

)X,x(π  measures the object x  “connectivity” within the set X ; an effective algorithm 

for such category of F  functions extreme points extraction may be found in [2]. 

Commencing the lemma 1 and the theorem 4 we conclude that an explicit monotonic 

system determines the function )X(F  in the sense of (25) if, and only if, the function 

)X(F  is an ordered quasi-sub-additive, in other words, if )X(F  is ! -quasiconvex. 
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