Nuclei of Monotonic Systems on a Semilattice of Sets *

I. B. Muchnik and L. V. Shvartser UDC 519.876

Algorithms developed in the method of monotonic systems for the identification of extremal
subsets are modified for the analysis of the condition of an arbitrary finite semilattice of sets.
We show how to generate these subsemilattices in a goal-directed manner in the form of solu-
tions of systems of inequalities defined by a collection of monotonic systems. The modified
technique is applied to construct new automatic classification algorithms.

1. Introduction

Monotonic systems are used as models of the identification of subsystems (nuclei) of a
complex system [1] when any subset of elements of the given system may be potentially cho-
sen. Formally, this means that the criterion of “nuclearity” (or autonomy) of a subsystem is
defined on the entire family of subsets of a given set. Yet the system may be subject to a pri-
ori constraints that exclude the choice of some subsets as a nucleus. In particular, in the prob-
lem of aggregation of empirical data, the aggregates to be selected from the set objects being
analyzed are often expected to satisfy inconsistent requirements. Such situations are studied

using models that are capable of allowing for the given constraints.

In this context, we generalize the method of monotonic systems so as to be able to effec-
tively find their nuclei on a part of the family of subsets of a given set. Only the families that

form a semilattice  in the lattice of all subsets are considered feasible.

We provide a general formulation of the nucleus identification problem and some solu-
tion algorithms. The algorithms use “oracle” procedures to find the unity (the largest subset
by inclusion) of the given semilattice. Two specific realizations of this procedure are de-
scribed. We show that the proposed procedures can be used to construct applied algorithms

that approach aggregation of empirical data as constrained extremum-seeking problems.
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family closed with respect to one of these operations. In what follows, we consider semilattices closed with
respect to union (upper semilattices).



2. Constrained Extremum Seeking on a Monotonic System
Consider a finite set W , [\N| =N. Let 2" be the set of its subsets, S some semilattice of
the lattice 2" (S U ZW), and <W,7'[,F> a monotonic system [1], i.e., each pair (i,H),

b H OW,, is assigned the weight 7(i,H ) such that
MiH)=m(i,H"),if H'OH, 1)

and each H 02" is assigned the number
F(H)=min7(iH). @
|

Consider the problem

F(H) - max, 3)

which we call the problem of finding a constrained extremum (a constrained nucleus)
on a monotonic system. It is a generalization of the problem of finding
the nucleus of a monotonic system [1]. By the quasiconvexity property of
F(H):F(H,OH,)2min(F(H,),F(H,))0 H,,H, OW [2] it follows that the set of
solutions of the problem (3), as well as the set of nuclei of a monotonic system, is a semilat-
tice (given that S is a semilattice). Similarly to the problem of finding a nucleus of a mono-
tonic system [1], which only considers algorithms that determine the largest (by inclusion)
nucleus, we will examine algorithms that determine the largest constrained nucleus — the

unity of the corresponding subsemilattice of the semilattice S.

The algorithms assume that a procedure is available for finding the unity E of the semilat-
tice $ [EI,X] , where [EI,X] is the set-theoretical interval O H O X forany X 02",

We call this procedure P1.
First consider a generalization of the procedure LAYER(u ), which is the basis of the most

efficient algorithm to find the largest nucleus of a monotonic system [3,4]. 2 The input infor-

2 Actually, the LAYER('U) algorithm was first introduced as a sequence of W elements in concord with

the level U, see “Stable Coalition in Monotonic Games”, Mullat, October, 1979, submitted in 1978,
http://www.datalaundering.com/download/monogame.pdf, rem. by JM.
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mation for this procedure includes the monotonic system <W ,n,F>, the semilattice S, the
threshold @ [ and the set X 02" .

Procedure LAYER(u,S,X).
Step0.Y = X.

Step 1. Using P1, find the unity E of the semilattice $ [D ,Y]. If E= [, then stop, else
determine the set | = {i|iDE,n(i,E)s u}.1f 1= O, then stop.

Step2.Set Y =E\I,.If Y= 0,set E [ and stop; else go to 1.

Definition. A level-u set (L[I D) (a nonstrict level-u set) of the semilattice A02" by
F(H) is the set

A= {HDA|F(H)>u}, (4= {HDOA|F(H)=4 ).
The level set A, (Z\J )for any W [ is obviously a semilattice.

Theorem 1. The result E produced by the procedure LAYER(u,S,X ) is unity of the
semilattice (S [D,X] ),

Theorem 1 is proved in the Appendix.

Algorithm Al to solve Problem (3).
Step0. X =W . Find the unity E wusing P1 and compute u':r%iEnn(i,E) and
|
u' = mD%xn(i,E). Let

u'+u"
u= . 4
> (4)

Step j. Apply the procedure LAYER(u,S, X ) and obtain one of the following results.

1. E= [0O. The set u" =u; transform u by (4) and again apply LAYER(u,S,X); con-
tinue updating u by (4) and applying the procedure LAYER(u,S,X ) until B2 O is
obtained.

2. B2 O.Setu=F(E) and apply LAYER(u,S,X). If the result E' is an empty set
(Et D), the last nonempty E is the sought result; stop. Otherwise (E# EI), set
U =u, update u by (4),set X =E',andgotostep (j+1).

In each step we obtain either the unity of the level-usemilattice S or the signal E= [,
which indicates that u > rngsx F(H). It thus obviously follows that Algorithm A1 will pro-

duce the largest (by inclusion) solution of the problem (3), i.e., the sought nucleus.



As shown in [5,6], in addition to the maxima of F(H ) on 2" (the nuclei), local maxima
(quasinuclei) are also of interest in applications. Special algorithms have been proposed for
determining these local maxima [1,4]. 3 Below we construct two algorithms that use a similar
technique to find all the local extrema of problem (3).

Algorithm A2.
Step 0. X =W . Apply P1to find E; and set u = F(E,).

Step j (j=1). Apply the procedure LAYER(U,S,E;) with u=F(E;). Its result is
E;-If Ejue O, thenstop, else to step (1 +1).

Theorem 2. Algorithm A2 constructs the sequence <El,..., Ep> of unities * of all level sub-

semilattices of the semilattices S by F(H ).
Theorem 2 is a direct corollary of the Theorem 1 if we note that E, is the unity of the

maximum level subsemilattice.

Corollary. E ; is the nucleus of the system <W ,7T,F> on S, i.e., the unity of the semilat-

tice of solutions of problem(3).
Algorithm A3.

Step 0. X =W . Apply P1 to obtain E, = E. Order all the elements from X \E
in the arbitrary way in the form of a sequence J = (jy,..., ji ).

Step j (j=1). Find an element iJE such that r(i,E)=F(E). Fix the value of
F(E) and set j, =i. Take X = E\{ i} and apply P1 to find the next
E; = E. Arrange the elements from X \E in arbitrary order following

(j+1).

As the value of the variable k, assign the number of elements in the sequence constructed
sofar. If = [J, the set E; argmax F(H ), p = j—1, where the maximum is over all

Ho ={iiJxurrmint : H, OS, k =1,N, stop. Otherwise, go to step ( j +1).

% In [1] only the largest nuclei/kernel has been detected, rem. by JM.
“ Thesets E;, 1 =1,...,p, are quasinuclei (local maxima) of F(H ) on S in the sense that

F(E;)>F(H) HI S:E; OH (see[4] and only they are quasinuclei.



It is easy to show that A3, like A2, produces the unities of all the level subsemilattices of
the semilattice S by F(H) (<E1,...,Ep>). Unlike A2, which applies the procedure

LAYER(u,S,X ), A3 finds solutions by constructing the sequence J , which is similar to

the defining sequence introduced in [1] for the analysis of the monotonic system on the entire

Boolean 2" .
3. Constructive Procedures to find the Unity of a Semilattice of Sets

The efficiency of the procedure to find unities of semilattices essentially depends on how
these semilattices are specified. In this section, we describe two particular specifications — by
a system of inequalities of quasiconvex functions and by a family of systems of representa-
tives of partitions generated by the cuts of the classification tree [7,8]. In the next section we
will show that both these methods naturally arise in applied problems of empirical data ag-

gregation.

First Technique [9].

Given are m monotonic systems (W ,m,,F,),...(W,m, ,F,). By the first assertion of

m
Theorem 1 and the fact that the intersection of a finite set of semilattices is a semilattice, we
obtain that the solution set @ 0 2" of the system of inequalities

F(H)2u,

...... (5)

is a semilattice. Its unity can be found by the following polynomial procedure.
Procedure P1-1.
Step0.Y =X.

Step 1. Successively find the unities of all the semilattices, each defined by one of the ine-

qualities in (5). To this end, apply the algorithm of [1] that construct the defining se-
quence on Y . We obtain the family of sets (E1 ...,E" )

m .
Step2. Y = ﬂ E'.If Y satisfies all the inequalities (5), then stop, otherwise return to step 1.
i=1



That the procedure P1-1 finds the unity of the semilattice Gh [D ,X] follows from two
easily proved facts:

1) theunity of @ [0, X] satisfies (5),

2) if S,,...,S,, are semilattices, E®,..,E™ their unities, and E, is the unity of the semilat-

m M .
tices [)S; then E, O()E".

i=1 i=1

Second Technique.

Let S be a sublattice of the lattice 2" with known unity Eg. If S is specified so that for

all x;,x, UW the question (A): is true that

O HJ S:x,UH, x,0H, (6)

can be answered in polynomial time, then, as shown in [10], we can easily construct a poly-

nomial procedure which, given any X [ Eg, constructs the intersection X ofall HOS,

suchthat H O X.

Procedure to Construct X [10].

Step 0. X = X. Take YyOE;\ X.

Step 1. Test (6) for X, =y, X, is any element from X . If the answer is yes for all x, L1 X,

then y 00 X ; if the answer is no foe at least one x, 0 X , thenset X=X O{y} .

Step 2. Take a previously unexamined y [JE¢ \ X and return to step 1; if no such y are

found, then stop.

The set X in [10] is called the closure ® of X . Using the closure construction procedure,

we obtain the following effective procedure to find the unity E, of $1 [D ,X] , X OW..

> Operation of the closure hereinafter will utilized, and for construction of the stability estimate classification of
objects from W is set up.



Procedure P1-2.

Step 0. Choose i, 0 X n Eg such that {i,} O X . If no such i, exists, then E,= O
(Ey is the unity of the semilattice $ [D,X]) and stop. Otherwise, set

Ho ={is} -
Step 1. Take iy O(X \H,)n Eg such that H{J {i,} O X . If no such i, exists, then
Ex =H, and stop. Otherwise, set H= H, D{ iof and goto 1.

For the special case when S is a lattice of systems of representatives of a hierarchical clas-
sification of elements of the set W , we will construct a polynomial procedure that answers
the question (A). It obviously ensures that the proposed procedure P1-2 runs in polynomial

time.
Let T be some hierarchical classification of elements of the set W defined by a tree of
classes (taxons), where W is the tree root and the leaves are all the single-element sets { [ }

i OW . Among all the cuts of this tree separating the root from the leaves, identify those cuts,
which ensure that the dominating classes (taxons) located on the same side of the cut as the
leaves, form a partition of the set W . Denote the set of these partitions by R. Adjoin to R

the partition consisting of the single class W .

Number the original sets W in an arbitrary sequence. The mapping that associates to each
ROR, a set of numbers from W by the rule: to each class from R associate the minimum

number in W contained in this class, is easily shown to be one-to-one. It is easy to show that
the image of the set R in 2" is the sublattice S of the Boolean 2" with Eq =W and

O :{1} . For this sublattice, we can construct an answer to question (A) in the following
way.

Starting with the vertex { xl} move up through the tree along an appropriate chain (we de-
note it by J Xl) and stop when we reach the taxon included in a similar chain originating from
the vertex { xz} (‘]Xz)' If the taxon obtained in this way or the preceding taxon in the chain

J X, has the number X, , then the answer to question (A) is no, because in this case we cannot

construct a cut that contains the taxon with the number X, and does not contain the taxon

with the number X, . Otherwise, the answer to question (A) is yes, because the cut separating

the vertex obtained in this way from the preceding vertex in J x, and the last vertex with the

number X, from its successor in J X, satisfies the give requirements.



4. Aggregation of Empirical Data by the Algorithm

that finds the Nucleus of a Monotonic System on a Semilattice

Consider two types of aggregation problems, which reduce to finding the constrained ex-
tremum on a monotonic system. The first type is characteristic of the case when the same set
of objects is described by several different groups of parameters or by several association
matrices determining different forms of interaction between the parameters. The second type
involves a single association matrix between the objects. This matrix is used to construct
some hierarchical classification that generates the family of classifications R.Itis required

to choose a classification, which is the best by a given criterion and at the same time satisfies

some stability test.

The first type will be constructed in the framework of the method of linguistic data analysis
[11]. The space of parameters, where the set of objects being analyzed is represented by a set
of points, is partitioned into (k +1) subspaces. The set of objects being analyzed is consid-
ered separately in each of these subspaces.

Let X% = || X{'] || be the g-th data matrix, where X;'; is the value of parameter j of the
q-th group A, (g =1,...,k +1) on the object i (Xi“j > (). Define a monotonic system on the

direct product of the set of all objects and the set A, of the parameters of the q-th group. To

this end, we introduce the weighting function

n((i,j),(Ho,H,?)): Z X+ zxiqp’ (7

kLHg pOH

where (HO,Hr?) is some subset of pairs such that  H, OW , j1 HJ O A,. Then

F,((Ho, HE))=min7z, (i, i).(Ho. HY)) ®)

iOHg
JOH{

is an estimate of the level of values of the elements x; of the submatrix of the matrix X *

defined by the set of rows H, and the set of columns A,.



From the set of submatrices {X 99=1..k +1}, choose one as the goal submatrix. For

definiteness, let this be X ***. Then the sought aggregation problem can be stated as the con-

strained extremum problem

Fa((HoH9 ) = max
Hel W H 1 0A (9)

F((Hy H' ) 2u,, i =1k.

This problem coincides with (3) up to the notation. Indeed, the constraints in (9) define a
semilattice S on the set 2" of feasible first elements in the pair (i : j), which in turn induces
the semilattice S %2 on the set of subsets of the pair (i, ) such that 0 H,OS,

g H 1024+ In other words, problem (9) may be viewed as problem (3) on the set

W =W x A,. The algorithm to find the unity of the constraint semilattice in this case is an
obvious modification of P1-1.

In this case, the solution of system (9) involves simultaneous search for (k +1) parameter

subsets (H,f‘)ﬂax in the submatrices X1,..., X *** such that the subset H"™ of objects satis-

ax

fying (3) comprises objects with the highest values of their characteristics on (Hr?)ﬂ
The analysis of an organization defined by (k +1) association matrices B, :”biqj”,

g =1,(k +1) that represent various interactions on the same set W of organizational func-

tions [5,6] is similarly reduced to the solution of problem (3). Consider each matrix A, sepa-

rately and define on these matrices monotonic systems with the weighting functions

i = 4
m,(i,H) Tu%Xb'J (10)

and the criterion
Fq(H):rirmannq(i,H). (11)

Then the sought problem is obtained as soon as we choose the goal (“principal”) matrix
As-

Let us consider the second type of aggregation problems. Let P = ||pi J|| be the matrix of
distances between objects of the set W, and T some hierarchical classification of the objects

W , based on the matrix P. The classification can be obtained by examining simultaneously

9



several partitions formed by constructing the graphs G(W,P,uq ) (u, <u, <... is a mono-

tone increasing collection of thresholds) on the vertex set W and then partitioning them into
connected components. The adjacency matrix M (G) = ||miqj|| of the graph G(W,P,u, ) is

defined as
o, if p; =ug,

mi. = ) (12)
H %) otherwise.

A hierarchical classification arises also in taxonomy algorithms that identify a tree of

minimum length on the complete weighted graph G(W ,P). Finally, agglomerative proce-

dures [7,8] directly construct a hierarchical classification.

The problem is to select a classification R from the set R of all possible classifications
generated by the given hierarchy T which is, first, the best by some criterion and, second,

sufficiently stable in the previously defined sense.

As the choice criterion of the sought classification R, we use the functional from [13]

F(Hg)=min Zpij' (13)

iTHR 47,

where Hy is a system of representatives of the partition R. Unlike [13], we maximize the

criterion (13) not on the entire set 2, but only on the semilattice S of the systems of repre-
sentatives of the partitions from R.Asa stability estimate of the classification R, we use a

function that reflects the variability of the classification R in the process of agglomeration

(this is consistent with the accepted procedure of hierarchical analysis [7]. Denote by E, the

unity of the lattice $ [EI,X].

m
Introduce the characteristic J(R) = z Z P;i; (M is the number of classes in R) and de-
§=1i,)(Rg

fine on S the function 1(Hy )= J(R). Itis easy to see that this function has the following

property: forall H,H'(JS suchthat H' [0 H ,

I(H)_I(HI)SI(EH\{i})_I(EH'\{i})' (14)

10



Then construct on 25 the monotonic system
(i, X )= 1(Egyg ) - 1(X), O X O2%.

Take A(Hg) = _rQHin ri(i,Hy ) as the stability estimate of the classification R.
ILAR

We thus obtain the following problem. On the lattice S of the system of representatives of

a classification from R generated by the hierarchy T find a partition R such that

F(Hg) - max, A(Hg)=u.

This problem obviously can be solved by any of the algorithms Al, A2, or A3, applying
the procedure P1-2 to find the unity of $ [D ,X] :

In conclusion, two remarks.
1. On the application level, the thresholds u;, i =1,...,m, in problem (3) with constraints

of the form (5) obviously should be made as large as possible. However, they cannot be taken
arbitrarily large because, first, this may reduce the sought maximum of F and, second, not
every choice of thresholds is consistent. For some collection of thresholds, the intersection of
the semilattices defined by corresponding inequalities is empty, i.e., no element in 2% is
common to all these semilattices. We therefore propose a scheme that refines the choice of
threshold in this sense and guarantees a nontrivial solution of (5).

Assume that the collection of thresholds { ul,...,um}, once substituted in (5), produces a so-
lution of problem (3) H”, such that F(H")=u,. Denote by A the set of all vectors
{ u,,u, Um} such that the collection { u,,u, urr} generates a nontrivial (in sense of (5))
semilattice. A vector from the set A, which is Pareto-unimprovable on A satisfies the above
requirements. The following procedure, starting with an arbitrary vector from A, produces

unimprovable vector on A.

Procedure P. Enumerating i =1,...,m, successively solve the problems F,(H ) - max,

Fi.i(H)=u;, F(H)=u,. When each solution Ifli is found, set u;, = F( I:‘Ii ).

11



Theorem 3. The point H" produced by procedure P is an equilibrium point
in the following sense: there is no H W such that for some iD{O,...,m}
we have F(H)>F(H") and F;(H)=F;(H") for jO{0,..m j#i (here
F(H)=F(H)).

The proof follows obviously from the fact that H™ is the unity of the corresponding semi-

lattice defined by the constraints.

The constraints in the procedure P can be selected in a different order, leading in general to

different equilibrium points. Moreover, the equilibrium point produced by the procedure ob-

viously depends on the initial choice of the threshold vector { ul,...,um} for the procedure P.

2. Our analysis has mainly focused on the relationship between two objects — semilattices

of sets and monotonic systems. Let us consider this relationship in detail.

Let S 02" be some family of subsets. Consider the hull S of the set S, i.e., a semilattice
S suchthat S 0'S and there is no semilattice S' such that $1 S' 0 S . Note that the hull-

construction procedure adjoins to the set S all the possible unions of its subsets.

Theorem 4. Assume that the procedure P1 for the semilattice S is polynomial. Then the

following two statements are equivalent:

1) S is asemilattice,
2) for any monotonic system algorithm A3 P1to S produces a solution of problem (3).

Theorem 4 is proved in the Appendix. It is similar to the well-known theorem on the corre-
spondence of the matroid and the greedy procedure [14]. Note that algorithm A3 is also su-

perficially similar to the greedy procedure.

APPENDIX

Proof of Theorem 1. Let B¢ . Since |= O, then F(E)>u,ie, B ($ [D,X])u.

It is easy to show by induction that the sets I, in each step consist of elements that do not
belong to any of HI ($ [D ,X])u. Thus there exists no HI (% [D ,X])u, such that
E O H . Therefore, E is the unity of the semilattice ($ [D ,X])u. The case E= [ obvi-
ously corresponds to (§ [ﬁ ,X])u: . .

12



Proof of Theorem 4. 1) — 2) was proved above. Let us prove 2) — 1) by contradiction. Let
H,,H,0S; HO H,0S. Take i OH,, i’ OH,. Construct a monotonic system in the

following way:
1) 0 H:HO H,0OH,,i OH,
[0 for & H,OH,,

i H)=0 fori=i,
Elzfori] H,OH,, izi,

2) 0 H:HD H,0H,\{i"}

. [0 for iOH,,
m(i,H) = ,
> for i0H,.

The subset H, with the value F(H,) =1 is clearly a solution of problem (3). at the same

time, algorithm A3 will generate the subset H, with the value F(H,)=%. A contradic-

tion. m
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