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Abstract

This paper presents, for the first time, a systematic description of
a new method of structural analysis of data, based on so-called mono-
tonic systems. It is aimed at constructing a systematic description
of the data. In this theory, the structure of the data is described as
a sequence of mathematical objects - quasi-kernels, which gives this
approach a certain resemblance to a classical agglomerative methods
(however here the starting point of the sequence - the kernel - is de-
termined by the theory). The paper mainly concerns itself with pre-
senting the mathematical basis for the suggested methods.

1 Problems of Structuring Social-Economic

Information and Theory of Monotonic Sys-

tems

A number of new approaches have appeared in the area of development of
mathematical methods for structural analysis of socio-economic information.
The first of these is the use of data classification methods for determining
the structure of the data, although other methods [7] are also used. Another
aspect is the use of the matrix of pair-wise similarity coefficients between
elements as the information basis for classification [5].

Finally, it should be noted that the problem of classification, formulated
as some problem of combinatorial optimization, in practically interesting
cases can only be solved through a rude approximation, because exact algo-
rithms require exhaustive search. Often there exists some prior information
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that leads to good initial conditions, or the data has a ”nice structure”. In
such cases a simple approximation algorithm may find an acceptable solution
after only a few trials.

In practice, a complicating factor in the analysis of economic and socio-
logical data is a presence of some free ”structural” parameter in the formal
description of the algorithm, such as a number of classes, or a threshold
of similarity that determines a maximally acceptable radius of a ”class” in
feature space. The algorithm needs to be tuned based on this parameter.

The above mentioned properties of modern methods for structural anal-
ysis of socio-economic data present tough problems to those interested in
applications since they usually operate on much wider concepts.

Most developers of methods for structural analysis treat these properties
of modern systems as characteristics of the problems and therefore put little
effort into revising them, or, if they do, then only for very special cases [1].
The need for such a revision, however, is acutely felt in applied studies where
specific classification methods receive an increasing amount of attention [3].

Those in the applied sciences use increasingly complicated combinatorial
methods to overcome the limitations of methods based only on pair-wise sim-
ilarity [5]. At the same time, a lot of effort is spent on developing specialized
methods for structural analysis of specific types of data that allow one to
find exact solutions to the structural analysis problem [2]. Thus arises the
problem of developing a universal mathematical apparatus for removing the
above-mentioned limitations on the general level of problem statement.

We think that one possible approach to solving this problem lies in in-
tensive use of the theory of monotonic systems [6]. The description of the
central mathematical construct of this theory leads to the treatment of obser-
vations not as isolated objects or properties but as elements of a system that
interact with each other and therefore are important not only in themselves
but also with respect to their position relative to other data. As a result, as
will be demonstrated in the remainder of this paper, the theory of monotonic
systems creates not a single procedure for structural analysis of data but, in
a sense, provides a complete and multi-faceted description of the structure
of the data.

In the Section 2 we give the exact definition of a monotonic system. In this
context we also introduce the concept of ”central structure of the data” - the
kernel, that can be viewed as a system of class ”centers”. At the same time,
a method for finding the exact solution of the corresponding optimization
problem is found. The main structural parameter, the number of centers, is

2



not given in advance but is determined in the process of solving the problem.
The solution has a number of properties that are important for interpreting
the results and are discussed in that same section.

The third section expands the concept of the central structure (kernel)
to the level of complete structural description of the data. Such complete
structure consists of a sequence of quasi-kernels where each element can be
seen as a specific (and automatically determined!) level of of detail in the
interpretation of the data. This sequence as a whole determines, in some
sense, a ”scope” of data.

The last section is devoted to describing the procedures for finding such
a sequence. It is shown that the complexity of such procedure does not
exceed N3, where N is the number of observations in data. Furthermore, the
complexity of the procedure can be reduced if only the ”core” part of the
structure, rather than the whole, is of interest.

The theory of monotonic systems determines some new class of combina-
torial optimization problems that can be be effectively solved and therefore
has greater importance than just another on method for processing empirical
data. In particular, it can be applied to problems of mathematical model-
ing of organizational structures, structural distribution systems, formation
of interactive coalition and many others [4].

2 Extremal Subsystems of Monotonic Systems

Consider a finite set W , |W | = N . Let π be a scalar function defined on
all pairs (i, H) where H ⊆ W is an arbitrary subset of W , and i ∈ H is its
element. π(i, H) can be interpreted as a measure of closeness of an element i
to H, “importance” or “weight” of i in H, degree of influence of i on H and
so on. If we define a distance matrix ||ρij|| on all pairs of elements of set W ,
then we can define π(i, H) as a sum of distances from element i to all other
elements of subset H of W:

π(i, H) =
∑

j∈H ρij.

We shall refer to π(i, H) as a weight of element i in set H.
Consider a system < W, π >, consisting of elements of a finite set W

together with function π(i, H) defined on a set of all pairs (i, H), H ⊆ W ,
i ∈ H. A system < W, π > is called monotonic if

π(i, H\j) ≤ π(i, H), ∀i, j ∈ H, i 6= j, ∀H ⊆ W, (1)

3



or
π(i, H\j) ≥ π(i, H), ∀i, j ∈ H, i 6= j, ∀H ⊆ W, (2)

Systems for which (1) holds are called 	-monotonic and are denoted by
< W, π− >. Systems for which (2) holds are called ⊕-monotonic and are
denoted by < W, π+ >.

Definition: 	-monotonic system < W, π− > is a finite set W together
with a scalar function π(i, H), (i, H), H ⊆ W , i ∈ H, that satisfies property
(1).

⊕-monotonic system is defined analogously. Inequality (2) in this case
also expresses the monotonic property of a system. Thus we obtain mono-
tonic systems of two types (or “two signs”).

The central task of the theory of monotonic systems is extraction of a
certain extremal subsystem of a monotonic system, also known as the defining
set (or the maximum kernel). This task can be formally stated and solved
as described in the remaining part of this paper.

A scalar function F− is defined on a set of all subsets H of W in a
	-monotonic system so that for any H ⊆ W :

F−(H) = min
i∈H

π−(i, H), ∀H ⊆ W (3)

Definition: A kernel (extremal subsystem) of 	-monotonic system <
W, π− > is a subset of W where the function F− attains its maximum value.

Analogously we can define a kernel of ⊕-monotonic system through the
introduction of a function F +(H):

F+(H) = max
i∈H

π+(i, H), ∀H ⊆ W (4)

that attains its minimum value on such kernels.
In what follows, F (H) and π(i, H) will be used whenever it is clear from

the context whether 	-monotonic or ⊕-monotonic system is discussed, or
when the discussion pertains to both types of systems. The same holds for
other notation.

Let A =< α1, . . . , αN > be an arbitrarily ordered sequence of elements
of W , and define H(A), or simply H, as H =< H1, . . . , HN > , a se-
quence of nested subsets of W , where H1 = W, H2 = H1\α1, . . . , Hk+1 =
Hk\αk, . . . , HN = αN .

Definition: An ordered sequence A of elements of W is called a defining
sequence of a 	-monotonic system < W, π− > if the corresponding sequence
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of subsets H contains a subsequence Γ =< Γ1, . . . , Γp >, where Γ1 = H1 = W
and

π(αk, Hk) < F (Γj+1), ∀αk ∈ Γj\Γj+1, j = 1, p − 1 (5)

F (L) ≤ F (Γp), ∀L ⊂ Γp. (6)

A defining sequence of ⊕-monotonic system is described analogously, ex-
cept for inequalities (5) and (6) that are replaced by:

π(αk, Hk) > F (Γj+1), ∀αk ∈ Γj\Γj+1, j = 1, p − 1 (7)

F (L) ≥ F (Γp), ∀L ⊂ Γp. (8)

Definition: Set G, G ⊆ W , is called a defining set of a monotonic system
< W, π > if there exists a defining sequence for which Γp = G.

We shall denote a defining set of a 	-monotonic system by G−, and
that of a ⊕-monotonic system - by G+. The following are the two central
theorems1of monotonic system theory [6].

Theorem 1 Function F−(H) attains its global maximum on a defining set
G− of 	-monotonic system. Defining set is unique. All sets where F−(H)
attains its global maximum, i.e. all kernels of 	-monotonic system, lie inside
the defining set

Let X be a set of all subsets of W .

Theorem 2 System of sets of X where F− attains the global maximum is
closed under binary union operation.

Theorems 1 and 2 for ⊕-monotonic systems are stated analogously, with
maximum replaced by minimum.

Consider a numerical sequence ε =< ε1, . . . , εp >, where εj = F (Γj),
j = 1, p.

Lemma 1 For 	-monotonic system the following chain of inequalities holds:

ε1 < ε2 < . . . < εp, (9)

while for ⊕-monotonic system

ε1 > ε2 > . . . > εp, (10)

1Since most properties (facts) concerning monotonic systems are symmetric for 	- and
⊕-monotonic systems, theorems stating those properties will be marked with “-” or “+”.
The sign is omitted when referring to a theorem if it is clear from the context what type
of system is being discussed.
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Proof: Let γj be the first element of Γj (j = 1, p − 1) in a defining
sequence. Since, by definition, sequence Γ is a subsequence of sequence H,
it follows that for some k Γj = Hk ∈ H and γj = αk. Then, according to
property (5) of defining sequence and definition (3) of the function F , we
have:

εk = F (Γj) ≤ π(γj, Γj) = π(αk, Hk) < F (Γj+1), j = 1, p − 1,

which implies (9). The chain of inequalities in (10) is proved analogously.
End of Proof.

Proof of Theorem 1: Assume that the defining set G exists 2. We need
to prove that F (G) ≤ F (H), ∀H ⊆ W .

Assume that there exists a set L ⊆ W , such that

F (G) ≤ F (L). (11)

Then there are two possibilities: either L ⊆ G or L\G 6= ∅. Consider the
first case. By definition of G there exists a defining sequence A of elements
of W with property (6), that is the strict inequality F (G) < F (L) cannot
hold and therefore only the equality holds in (11). In that case, the first and
the third statements of the theorem are proven. The uniqueness of G will be
proven later for both cases simultaneously.

Consider the second possibility (L\G 6= ∅). Let Hn be the minimal set
of sequence H corresponding to the defining sequence A, containing the set
L\G. That is, there exists αn ∈ Hn, but αn /∈ Hn+1. Now, let ΓS be the
minimal set of sequence Γ such that Hn ⊆ ΓS but Hn 6⊆ ΓS+1. This means
that αn ∈ ΓS,L ⊆ ΓS (since L ⊆ Hn ⊆ ΓS), αn /∈ ΓS+1.

Then, based on property (5) of defining sequence and Lemma 1, we can
conclude that

π(αn, Hn) < F (ΓS+1) < F (G) (12)

It follows from (11) and (12) that

π(αn, Hn) < F (G) < F (L).

But according to monotonicity property (since L ⊆ H)

2The existence of the defining set and defining sequence is not proven here. Section
4 contains construction of the defining sequence and thereby proves the existence of the
defining set. Thus a complete proof of the theorem 1 consists of the proof given here
combined with algorithms in Section 4.

6



π(αn, L) ≤ π(αn, Hn),

implying that

π(αn, L) ≤ F (L) = mini∈L π(i, L).

The above inequality implies that set L contains an element αn with the
weight that is strictly less than the minimum, which is impossible. Therefore
it follows that L can be only a subset of G, i.e. all sets where F attains
its global maximum are contained inside G. It remains to show that if the
defining set exists, it must be unique. From the above discussion, if there is
a defining set G′ 6= G, then it must be included in G. But similarly, G must
be included into G′, thus proving uniqueness of G.

Proof of Theorem 2: Let G1 and G2 be two different kernels of 	-
monotonic system. We need to show that G1 ∪ G2 is also a kernel, i. e.
that

F (G1 ∪ G2) = F (G1) = F (G2) = max
H⊆W

F (H). (13)

Since F (H) attains maximum on G1 and G2, it follows that

F (G1 ∪ G2) ≤ F (G1), F (G1 ∪ G2) ≤ F (G2). (14)

On the other hand, let g ∈ G1 ∪G2 be an element such that π(g, G1 ∪G2) =
F (G1 ∪ G2). Assume g ∈ G1. (if g ∈ G2 the argument proceeds similarly).
Then, by monotonicity property we have

π(g, G1) ≤ π(g, G1 ∪ G2),

and, therefore,

F (G1) = min
i∈G1

π(i, G1) ≤ π(g, G1 ∪ G2) = F (G1 ∪ G2). (15)

From (14) and (15) we obtain (13), thereby proving the theorem.
Theorems 1 and 2 establish important structural properties of monotonic

systems: the set of all of its kernels forms a closed system under the union
operation, and the union of all kernels is the defining set and the largest
kernel.

An algorithm for constructing defining sequence that will be discussed in
Section 4 allows effective (without exhaustive search) extraction (according
to the definition) of the largest kernel, to which we shall below refer as simply
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the kernel. In other words, the kernel of a monotonic system is the last set
G = Γp in the sequence Γ that is fixed in the process of constructing the
defining sequence.

Thus, the kernel of monotonic system can be determined by constructing
a defining sequence of its elements. In connection to this we examine the set
of all possible defining sequences of a monotonic sequence.

Generally speaking there can be many distinct defining sequences for one
monotonic system that satisfy the definition. However, theorems 1 and 2
demonstrate that a monotonic system has only one kernel, i.e. the largest
set where function F (H) attains its global extremum value. Therefore all
defining sequences are structured in such a way that the last set G in the
corresponding sequences Γ is the same. This fact limits the number of defin-
ing sequences of a monotonic sequence that need to be examined to a given
single defining sequence.

Indeed, assume that a way for transforming given defining sequence into
another defining sequence is known. Then a possible method for enumerat-
ing all defining sequences is to use a constructive approach for finding one
defining sequence and then generating the set of all defining sequence from
the first one using this transformation.

The following theorem demonstrates bounds on a set of all defining se-
quences that can be constructed via such a method.

Theorem 3 If αS and αt, S < t are two elements of a defining sequence A
such that αS, αt ∈ G, then the sequence

A′ =< α1, . . . , αS−1, αt, αS+1, . . . , αt−1, αS, αt+1, . . . , αN >

is also a defining sequence. However if αS ∈ W\G, αt ∈ G, then A′ is not a
defining sequence.

Proof: Let us start by proving the first statement of the theorem. Let
αS, αt ∈ G. Since G = Γp is the last set in sequence Γ (and m-th set in
sequence H), sequences A and A′, H and H ′ are identical up to the element

im−1 and set Hm−1 accordingly. Therefore sequences Γ and Γ
′
also coincide,

and condition (5), which by definition holds for Γ, also holds for Γ
′
. Condition

(6) clearly holds regardless of the ordering of elements inside G.
The second statement of the theorem concerns the situation where αS ∈

W\G, αt ∈ G. Taking into consideration the fact that αS
′ = αt ∈ G and G ∈

HS
′ = HS and using the definition of the function F (H) and monotonicity

property, we obtain the following:
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F (G) ≤ π(αt, G) ≤ π(αt, Hs) = π(αS, HS
′).

This contradicts property (5) of defining sequence with respect to se-
quence A′. The proof is complete.

At the same time we have proven that in the second case (when αS ∈
W\G, αt ∈ G) set (G ∪ αS)\αt is not the kernel.

The theorem 3 does not cover a third possibility, that of αS, αt ∈ W\G.
It can be shown that the rearrangement of arbitrary elements outside the
kernel can lead to both preservation and violation of properties of a defining
sequence (in particular of property (5)).

Since the set of transformations of defining sequences one into another is
in fact the set of all possible permutations of elements of G together with
some permutations of elements of W\G, the number of all defining sequences
of a monotonic system is bounded above by |W\G|! × |G|!.

3 General Properties of Monotonic Systems

In this section we shall examine the common properties of ⊕- and 	-monotonic
systems. Therefore when these properties for ⊕- and 	-monotonic systems
are symmetric, only the properties of 	-monotonic systems shall be stated.
Analogous properties for ⊕-monotonic systems can be derived by substitut-
ing inequality signs > and <, ≥ and ≤, max and min, etc.

The main purpose of this section is to demonstrate that any set Γj,j =
1, p − 1 from sequence Γ possesses certain extremal properties, analogous to
the properties of the kernel G = Γp. This will also indicate the importance
of the elements of the sequence Γ for the problems of structural analysis, in
addition to that of the kernel G itself.

Firstly, we give another, more precise, definition of kernel.
Definition: A kernel of a 	-monotonic system < W, π > is the largest

subset G of set W where function F (H) attains its maximum. That is, G
must satisfy the following properties:

F (G) = max
H⊆W

F (H) (16)

|G| = max
H⊆W,F (H)=F (G)

|H| (17)

Properties (16) and (17) can be restated in a different form as:

F (H) < F (G), ∀H ⊆ W, |H| > |G| (18)
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F (H) ≤ F (G), ∀H ⊆ W, |H| ≤ |G| (19)

On the other hand, we can state, based on Theorems 1 and 2, that for
the defining set G the following properties hold:

F (H) < F (G), ∀H ⊆ W, H\G 6= ∅ (20)

F (H) ≤ F (G), ∀H ⊆ W, H ⊆ G. (21)

It can be demonstrated that relations (18), (19) follow from relations (20),
(21). Indeed, the set of all subsets, including single elements not belonging
to G, that is the set {H : H\G 6= ∅}, consists of two parts: set of subsets
of W with more elements that in G, and set of subsets of W for which
simultaneously |H| ≤ |G| and H\G 6= ∅. The second part is at the same time
a part of {H : |H| ≤ |G|}, where the remaining part is the set {H : H ⊆ G}.
Combining these relations leads to the desired statement.

This in turn means that the Theorem 1 from the previous section can be
restated as follows:

Theorem 4 The defining set is the unique kernel.

In other words, there can be no other maximal kernels except for the defining
set. Therefore, the concepts of the defining set and of the kernel that were
previously defined independently refer to the same object.

The kernel therefore can be equivalently defined as:

• the defining set

• the set satisfying relations (16) and (17), or (18) and (19), or (20) and
(21)

These different definitions will be used in what follows for proving prop-
erties of monotonic systems. Additionally, it is natural to attempt to find
a definition of kernel that would impose least strict and easily checked con-
straints on a given set. In such circumstances the proof of a fact that some
set is the kernel of a monotonic system would be straightforward. In particu-
lar, in order to show the correctness of an algorithm for extracting the kernel
of a monotonic system that is described in the next section, it is useful to
introduce another definition of the kernel.

Let G be a set satisfying the following relations:

F (H) < F (G), ∀H ⊆ W, H ⊃ G (22)

F (H) ≤ F (G), ∀H ⊆ W, H ⊆ G. (23)
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Theorem 5 The kernel G of 	-monotonic system satisfies relations (22)
and (23). A set G, satisfying relations (22) and (23), is the kernel.

Proof: We have to prove that relations (16) and (17), or (18) and (19), or
(20) and (21) imply relations (22) and (23), and the other way around. It is
easy to see that (21) and (23) coincide, while (22) follows from (20) or (16).
That is, (22) and (23) hold for the kernel. Let us now prove that (22) and
(23) imply (20) and (21).

Let H, H ⊆ W, H\G 6= ∅. Consider set H ∪ G. Since H ∪ G ⊃ G, then
by (22) we have

F (H ∪ G) < F (G).

Let α be an element of H ∪ G s.t

F (H ∪ G) = π(α, H ∪ G).

Suppose α ∈ G. Then, using monotonicity property and the definition of
F (H), we obtain the following sequence of inequalities:

F (G) ≤ π(α, G) ≤ π(α, H ∪ G) = F (H ∪ G) < F (G)

that leads to a contradiction. Now, suppose α ∈ H\G. In this case we obtain
an analogous sequence of inequalities:

F (H) ≤ π(α, H) ≤ π(α, H ∪ G) = F (H ∪ G) < F (G),

that proves (20) and therefore (16). The proof is complete.
We have proven that (22) and (23) provide an equivalent definition of

the kernel. At the same time it is easy to see that proving (22) and (23) for
some set G requires examining a smaller number of subsets H that proving
of relations (18), (19) or (20), (21).

In addition, for further exploration of properties of monotonic systems
we will need a narrower class of defining sequences that arise with adding
another condition to the ones already given ((5) and (6)) in the previous
definition (in Section 2).

Definition: An ordered sequence A =< α1, . . . , αN > of all elements of W
is called a maximal defining sequence if the corresponding sequence of set H
contains a subsequence Γ =< Γq, . . . , Γp > where Γ1 = H1 = W for which,
in addition to the properties (5) and (6) the following holds:

π(αk, Hk) ≤ F (Γj), ∀αk ∈ Γj\Γj+1, j = 1, p. (24)
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The idea behind this definition is that for none of the sets Hi, s.t. Γj ⊃
Hk ⊃ Γj+1, property (5) holds. Therefore, no set Hk from sequence H can be
added to the sequence Γ between j − µ and (j + 1) − µ of its elements, that
is between Γj and Γj+1. The definition given in Section 2 however allowed
such situation.

In the rest of this paper, maximal defining sequence, as defined here, is
implied whenever a defining sequence is mentioned.

We now demonstrate that for sets Γj, j = 1, p properties analogous to
(18)-(23) hold.

Theorem 6 The following statements are true for the sets Γj of sequence Γ:

F (H) < F (Γj), ∀H ⊆ W, H\Γj 6= ∅, j = 2, p (25)

F (H) ≤ F (Γj), ∀H ⊆ Γj, H ⊃ Γj+1j = 1, p − 1. (26)

The analogy between (20), (21) on the one hand, and (25), (26) on the
other is clear. In order to derive even more similar expressions we need
the following notation: Γ0 = Γ1 = W and Γp+1 = ∅ (Γp = G is the last
nonempty set in the sequence Γ). Then relations (20), (21) and (25), (26)
can be combined as follows:

F (H) < F (Γj), ∀H ⊆ W, H\Γj 6= ∅, j = 1, p (27)

F (H) ≤ F (Γj), ∀H ⊆ Γj, H ⊃ Γj+1, j = 1, p. (28)

Thus, the difference between the kernel G = Γp and other sets Γj 6= Γp

in the sequence Γ is that the kernel’s successor in the sequence is an empty
set. Also, as follows from the Lemma 1, F (G) > F (Γj)j = 1, p − 1. In all
other respects the extremal properties of the kernel and of any other set in
the sequence Γ are the same.

Corollary 1 For any subset H of W , s.t Γj ⊃ H ⊃ Γj+1 for some j =
1, p − 1 the following is true: F (H) ≤ F (Γj) = εj F (H) < F (Γj+1) = εj+1

Proof of Theorem 6: Let us prove (25) by contradiction. Consider set
H ⊆ W , where

F (H) ≥ F (Γj) (29)

but not H ⊆ Γj. The last part implies H\Γ 6= ∅. Let αn be the first element
of set H in the defining sequence, i.e. αn ∈ H, Hn ⊇ H, not Hn+1 ⊇ H.
Then Hn ⊃ Γj, that is Hn ⊆ H ∪ Γj. Then, by monotonicity property and
(5), we have
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F (H) ≤ π(αn, H) ≤ π(αn, Hn) < F (Γj)

contradicting (29). Thus the first statement of the theorem is proven 3.
Relation (26) is proven analogously, except that instead of (29) it is nec-

essary to use the strict inequality F (H) > F (Γj) where H 6⊆ Γj+1, H ≤ Γj,
and instead of (5) - relation (24). The proof is therefore complete.

The statement of the Theorem 6 become more interpretable if we intro-
duce the following ”geometric” notions. Definition: An interval [D, E], where
D ⊃ E in the set X of all subsets of W is a family of elements T , T ∈ X,
that satisfies the relation:

[D, E] = T, D ⊇ T ⊇ E. (30)

If a strict inclusion holds in the left or the right parts of relation D ⊆ T ⊆ E
then the square bracket is replaced by the circular one in the interval notation:

[D, E) = T, D ⊇ T ⊃ E

(D, E] = T, D ⊃ T ⊇ E

(D, E) = T, D ⊃ T ⊃ E

Definition: A set L, L ⊆ W is a maximum of a function F (H) on an
interval [D, E] (s.t. L ∈ [D, E] if it satisfies

F (L) ≥ F (T ), ∀T ∈ [D, E]. (31)

Extrema on the open and semi-open intervals are defined analogously.
The maximum is called strict if the strict inequality holds in (31).

Theorem 6 can be restated using the above definitions as follows.

Theorem 7 Each set Γj, j = 1, p of the sequence Γ is a maximum of the
function F (H) on the interval [Γ1 = W, Γj+1).

All sets H, H ⊆ W where F (H) has value F (Γj) for some j = 1, . . . , p lie
inside set Γj. All sets H, H ⊆ W where F (H) has value greater than F (Γj)
for some j = 1, . . . , p − 1 lie inside the set Γj+1. The proof is completely
identical to the proof of the Theorem 6. Relations (25), (26) mean exactly

3Thus the proof of the first statement of Theorem 6 relies only on relation (5) of the
general definition of the defining sequence in Section 2
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that the set Γj is a maximum of F (H) on the interval [W, Γj+1]. Also, the
set Γj is a strict left-side maximum on the interval [W, Γj] and a non-strict
right-side maximum on the interval [Γj, Γj+1].

For completeness of description of extremal properties of the sets Γj, we
introduce two more concepts.

Definition: A neighborhood of set H is the union of all sets L such that
H ⊂ L ⊆ W .

In other words, the neighborhood of H is the interval [W, H].
Definition: A set H0 is a strict local maximum of the function F (H) if it

is a strict maximum of this function in its neighborhood.

Corollary 2 A set H0 is a strict local maximum of the function F (H) if
and only if H0 = Γj where Γj ∈ Γ.

So, theorem 7 establishes that the function F (H) has a very simple structure:
it has p ≤ N = |W | strictly increasing local maxima. The last of these is
also a global maximum. It is precisely this simplicity that allows for the
construction of a fast algorithm for extracting the kernel: it is only necessary
to build a procedure for sequential examination of all the local maxima of
F (H).

The analogy between G = Γp and the other set Γj of the sequence Γ can
also be seen at the set-theoretic level. This is established in the following
theorem.

Theorem 8 The system of the subsets of W where F− attains or exceeds the
value of F (Γj) for some j = 1, p is closed with respect to the binary union
operation.

Proof: Let E1, E2 be two distinct set in W such that

F (E1) ≥ F (E2), F (E2) ≥ F (Γj), j = 1, p. (32)

According to the theorem 7 E1, E2 ⊆ Γj. We need to show that the following
inequality is true:

F (E1 ∪ E2) ≥ F (Γj), j = 1, p. (33)

(it is easy to see that E1 ∪ E2 ⊆ Γj). Let α ∈ E1 ∪ E2 be an element where
F (E1 ∪ E2) attains its value: π(α, E1 ∪ E2) = F (E1 ∪ E2). Assume without
loss of generality that α ∈ E1. Then by monotonicity property we have:
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π(α, E1) ≤ π(α, E1 ∪ E2),

and therefore

F (E1) = min
i∈E1

π(α, E1) ≤ π(α, E1) ≤ π(α, E1 ∪ E2) = F (E1 ∪ E2). (34)

Combining (32) and (34) gives (33). The proof is complete 4.
It is easy to notice a strong similarity between theorems 7 and 8 with

1 and 2. Only a statement regarding the uniqueness of the sets Γj from
sequence Γ is missing, that is remedied with the following theorem:

Theorem 9 If A and A′ are two distinct maximal defining sequences of a
	-monotonic system < W, π >, then the corresponding sequences Γ and Γ

′

coincide:

p = p′, Γj = Γ′
j, ∀j = 1, p.

Proof: By contradiction. Let ΓS
′ be the first set in the sequence Γ

′
such

that ΓS 6= Γ′
S, but Γj = Γ′

j, ∀j = 1, S − 1. (Note that Γ1 = Γ′
1 = W

by definition. Two cases are possible: Γ′
S ⊂ ΓS or Γ′

S\ΓS 6= ∅. We shall
consider them one at a time. In the first case, according to the theorem 3,
for a set H = ΓS s.t. ΓS−1 = Γ′

S ⊃ H ⊃ Γ′
S we have F (ΓS) ≤ F (ΓS−1).

This inequality contradicts relation (9) for the sequence Γ (lemma 1). In the
second case Γ′

S\ΓS 6= ∅. Let H be the minimal set of sequence H such that
Hn ⊃ Γ′

S. Clearly, Hn ⊆ ΓS−1, αn ∈ Γ′
S, where αn ∈ Hn, αn 6∈ Hn+1. Since

ΓS−1 = Γ′
S−1 by our assumption, we have F (ΓS−1) = F (Γ′

S−1) < F (Γ′
S). On

the other hand, considering the monotonicity property for sets Γ′
S and Hn,

Γ′
S ⊂ Hn, the definition of F (H) and corollary to theorem 6, we have:

F (Γ′
S) ≤ π(αn, Γ′

S) ≤ π(αn, Hn) ≤ F (ΓS−1).

Once again we have arrived at a contradiction with lemma 1. The proof is
complete.

According to the theorem 6, the sequence of nested sets Γ can be seen
as a characteristic of the structure of the monotonic system that is invariant
with respect to relations and transformations of one defining sequence into
another.

4It is straightforward to check that theorem 8 is still valid if we use the general definition
of a defining sequence given in Section 2.
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Consider once again the maximal defining sequence and the corresponding
set Γ =< Γ1, . . . , Γp >. It should be noted that sets Γj−1\Γj, j = 2, p also
possess certain extremal properties. Specifically, in addition to monotonic
system < W, π > defined on set W, we can define on W\Γj another monotonic
system < W\Γj, π

′ >, where

π′(i, H) = π(i, H ∪ Γj), ∀H ⊆ (W\Γj), i ∈ H.

Theorem 10 The kernel of a monotonic system < W\Γj, π
′ > is the set

G′ = Γj−1\Γj.

Proof: We need to show that

F ′(H) < F ′(G), ∀H ⊆ (W\Γj), H\G′ 6= ∅

F ′(H) ≤ F ′(G), ∀H ⊆ (W\Γj), H ⊆ G′.

Let us prove the first of these:

F ′(H) = mini∈H π′(i, H) = mini∈H π(i, H ∪ Γj).

Since

mini∈Γj
π(i, Γj) > mini∈Γj∪H π(i, H ∪ Γj), ∀H ⊆ W\Γj, H 6⊆ G′

and since the function π(i, H) is monotonic, it follows that

mini∈H π(i, H ∪ Γj) = mini∈H∪Γj
π(i, H ∪ Γj), ∀H ⊆ W\Γj, H 6⊂ G′.

This means that

F ′(H) = F (H ∪ Γj) < F (Γj−1) = F (G ∪ Γj) =

= mini∈H∪Γj
π(i, G′ ∪ Γj) = mini∈G′ π(i, G′ ∪ Γj) = F ′(G′)

Let us now prove the second statement. By using analogous reasoning to
the proof of the first statement, we obtain

F ′(H) = F (H ∪ Γj) ≤ F (Γj−1) = F ′(G′)

The proof is complete.
As a conclusion of the comparative exploration of the properties of the

kernel G = Γp and other elements Γj of the sequence Γ we state two more
special properties of such sets.
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Lemma 2 For any set Γj,j = 2, p of sequence Γ the following relation holds:

max
αn∈W\Γj

π(αn, Hn) ≤ max
αn∈Γj−1\Γj

π(αn, Hn) (35)

Proof: Since it is clear that W\Γj ⊃ Γj−1\Γj it remains to show that

maxαn∈W\Γj−1
π(αn, Hn) ≤ maxαn∈Γj−1\Γj

π(αn, Hn).

Indeed, note that the right hand side of this inequality is at least F (Γj−1),
since the set Γj−1 always contains an element γj−1 ∈ Γj−1\Γj such that
π(γj−1, Γj−1) = F (Γj−1). Therefore, maxαn∈Γj−1\Γj

π(αn, Hn) ≥ F (Γj−1).

On the other hand, using the definition of set Γj of the sequence Γ and 1, for
any Γj−1 and H, H ⊂ Γj−1 we have

π(αn, Hn) < F (Γj−1), ∀αn ∈ W\Γj−1.

Combining the two inequalities proves the lemma 5.
According to lemma 1 we can write:

max
αn∈W\G

π(αn, Hn) ≤ max
αn∈Γp−1\G

π(αn, Hn), (36)

where G = Γp is the kernel of a ominus-monotonic system and Γp−1 is the
immediately preceding the kernel set in the sequence Γ.

Lemma 3 The weight of any element k ∈ W that does not belong to Γj, j =
2, p, i.e. k ∈ W\Γj obtained by adding this element to this set is no larger
that the value of the function F (Γ)j). That is

π(k, Γk ∪ k) < F (Γj), ∀k ∈ W\Γj, j = 2, p. (37)

Proof: by contradiction. Assume that there exists k ∈ W\Γj such that

π(k, Γj ∪ k) ≥ F (Γj).

On the other hand, by monotonicity property of Γj ∪ k:

π(i, Γj ∪ k) ≥ π(i, Γj) ≥ F (Γj), ∀i ∈ Γj

Combining these two inequalities leads to

5Lemma 2 is true for defining sequence satisfying a general definition given in Section
2. The same holds for lemma 3.
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F (Γj ∪ k) = mini∈Γj∪ π(i, Γj ∪ k) ≥ F (Γj),

contradicting the statement (25) of theorem 6. The proof is complete.
According to lemma 2 we can now write

π(k, G ∪ k) < F (G), ∀k ∈ W\G. (38)

Here we complete the discussion of properties of the kernel G = Γp and
other elements Γj of the sequence Γ

Let us now move on to the description of the problems of structural
analysis where, together with the kernel G, it is reasonable to use other sets of
the sequence Γ. Since the theory of monotonic systems and in particular the
task of extracting an extremal subsystem are viewed here as a new approach
to structural analysis, it is interesting to examine the possibility of solving
the initial problem with some apriori constraints. Below we discuss two types
of such constraints.

The first type of constraint arises when the problem of structural analysis
specifies a desirable (necessary) size of the extremal subsystem or a desirable
range for it.

The second type includes situations when the problem includes a set of
elements that must be included into the subsystem.

In the practical problems of structural analysis both types of constraints
may arise simultaneously. They are connected to apriori ideas, based on
additional knowledge that might not be reflected in the data.

Consider a problem of extracting an extremal subsystem satisfying con-
straints of the first type.

Let < W, π > be a 	-monotonic system. Fix number n, n < N . Consider
a problem of finding a subset Gn of W such that the F (H) attains a maximum
there among all subsets of W that contain more than n elements. That is

F (Gn) = max
H

F (H), H ⊆ W, |H| > n. (39)

The solution of this problem is given by the following theorem.

Theorem 11 a) For any set Γj, j = 1, p of sequence Γ and any set H,
H ⊆ W such that |H| > |Γj| the following inequality holds:

F (H) < F (Γj).

b) For any set Γj, j = 1, p of sequence Γ and any set H, H ⊆ W such
that |Γj| ≥ |H| > |Γj−1| the following inequality holds
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F (H) ≤ F (Γj).

Let us now consider the problem of extracting an extremal subsystem
of a monotonic system satisfying constraints of the second type. Again, let
< W, π > be a 	-monotonic system. Fix some set T of elements of W ,
T ⊆ W . Consider a problem of finding a subset GT of W where F (H)
attains its maximum value among all subsets of W containing set T :

F (GT ) = max
T⊆H⊆W

F (H). (40)

The elements of T can be called key elements. In other words, the problem
is to extract an extremal subsystem of monotonic system containing the given
key elements. The solution of this problem is given by the following theorem.

Theorem 12 For any set T, T ⊆ W and a set ΓS of sequence Γ such that
T ⊆ ΓS but T 6⊆ ΓS+1 the following inequalities hold:

F (H) < F (ΓS), ∀H ⊆ W, T ⊆ H, H\ΓS 6= ∅, (41)

F (H) ≤ F (ΓS), ∀H ⊆ W, T ⊆ H, H ⊆ ΓS. (42)

The proof of theorems 11 and 12 follows directly from theorem 6, and
therefore these theorems can be viewed as corollaries of theorem 6.

The properties of monotonic systems discussed here allow one to solve
the problem of extracting an extremal subsystem of a monotonic system with
additional constraints in the form of a set of elements that must be included
in the subsystem or in the form of constraints on the size of the subsystem.
In both cases, as follows from theorems 11 and 12 the natural solution is
the smallest set Γj satisfying the specified constraints. Comparison between
F (Γj) and F (G) demonstrates the degree of perturbation of the ideal solution
by the introduction of additional constraints.

Note that in Section 2 the defining sequence of elements of monotonic
system we introduced as some construct to be used for extracting the ker-
nel, i.e. the maximum set G, G ⊆ W , where function F (H), defined in (3)
attains its global maximum. In this section we have demonstrated that the
construction of the maximum defining sequence is used not only for finding
the kernel, but for discovering the structure of monotonic system. Specifi-
cally, it allows us to extract a sequence of special subsets Γj, j = 1, p of the
initial set W that have properties similar to those of the kernel.

In light of this, it is natural, by analogy with definition of the last set
Γp = G as the kernel of monotonic system, to call other sets of sequence Γ
quasi-kernels, and to call Γ itself - a sequence of quasi-kernels.
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4 Algorithms for Extracting Kernels of Mono-

tonic System

The existence of the defining sequence of elements of monotonic system, and
therefore of the kernel, was assumed in all the definitions and and theorems
introduced in the previous sections. To prove this it suffices to demonstrate
a constructive procedure for computing such a sequence.

As was mentioned before, a monotonic sequence can have many distinct
defining sequences. All of them yield the same kernel G. Also, all the max-
imal defining sequences generate the same sequence of quasi-kernels Γ, ac-
cording to the theorem 9.

We consider three different algorithms for extracting the kernel of a mono-
tonic sequence. One of them constructs a general defining sequence, defined
in Section 2. Another one constructs a maximal defining sequence, intro-
duced in section 3. The third one computes a special kind of defining se-
quence.

Before we examine these algorithms, we discuss an iterative procedure
used in both first and second algorithms [6].

Procedure LAY ER(τ). The input of this procedure consists of an ar-
bitrary set H together with the function π(i, H) defined on this set and its
elements, together with a scalar threshold τ . The pre-processing step includes
computing all values π(i, H), i ∈ H if there were not previously computed.
Each iteration of this procedure consists of two steps. The first step con-
sists of comparing π(i, H) values of elements of H with the threshold τ and
selecting those for which π(i, H) ≤ τ .

These elements are included in an arbitrary order into a sequence of
elements of W that is being formed (while being removed from the set H).

In the second step, for each element i of H ′, H ′ ⊆ H - a set of remaining
elements - the value of π(i, H ′) is computed instead of π(i, H). After this the
first step is repeated: elements of the set H ′ with function value π(i, H ′) ≤ τ
are selected, inserted into a sequence in an arbitrary order, and so on.

The last iteration of the procedure is determined by whether there are
any elements of H with weight less than or equal to τ left. The result of
the procedure is a set E, E ⊆ H, of the remaining elements with computed
values π(i, E) > τ, ∀i ∈ E. and an interval of sequence of elements of W\E
in the form of several sequential groups, with elements in arbitrary order
inside each group. In a special, but important, case procedure LAY ER(τ)
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return an empty set, i.e. E = ∅, and all elements of H for intervals of the
sequence.

Lemma 4 Let τ1 ≥ τ2, H1 - result of LAY ER(τ1) on set W , H2 - result of
procedure LAY ER(τ2) on set W , H3 - result of procedure LAY ER(τ1) on
set H2. Then H1 = H3.

Proof: We first prove that H3 ⊆ H1. Because of monotonicity of π(i, H)
and since H3 is the output of LAY ER(τ1), it follows that

π(i, W ) ≥ π(i, H3) ≥ τ1, ∀i ∈ H3.

This means that after the first iteration of procedure LAY ER(τ1), the
set H ′ ⊇ H3 and

π(i, H ′) ≥ π(i, H3) > u1, ∀i ∈ H3

Continuing in this fashion, we conclude that no element of H3 can be
thrown out at any step of LAY ER(τ1). Therefore H3 ⊆ H1.

Now we prove that H1 ⊆ H3. Clearly, π(i, W ) ≥ πi, H1 > τ1 ≥ τ2, ∀i ∈
H1. That is, during the first iteration of LAY ER(τ2) on W no element of
H1 can be thrown out. By continuing this chain of reasoning analogously to
above, we conclude that H1 ⊆ H3.

The two proved inequalities imply H1 = H3, QED.

Lemma 5 Let τ1 > τ2, H1 - result of LAY ER(τ1) on set H, H2 - result of
procedure LAY ER(τ2) on set H. Then, if F (H2) > τ2 then H1 = H2. If
H2 = ∅, then H1 = emptyset.

Proof: It is easy to see that since F (H2) > τ1, elements of H2 could not
have been thrown out by LAY ER(τ1). So H2 ⊆ H1. But since F (H1) > τ1,
H1 ⊆ H2. Therefore H1 = H2. The second statement of the lemma is proved
analogously.

Algorithm A1 for constructing a general defining sequence (see Section
2). Assume that Γ1 = H = W . Compute values π(i, W ) for all elements of
W and determine the two values

τ ′ = mini∈W π(i, W ), τ ′′ = maxi∈W π(i, W ).
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Fix an arbitrary value τ so that τ ′ < τ < tau′′, for example as the average
of the two: τ = (τ ′ + τ ′′)/2 The same procedure is used for recomputing the
value of τ when values τ ′ and τ ′′ are changed during the execution of the
algorithm.

Arbitrary j-th step. Run procedure LAY ER(τ) on the set H (for the first
step H = W ). Two outcomes are possible.

1. The output set E is empty. That means that the threshold τ is too
large. Then, set τ ′′ = τ , recompute τ and repeat the call to LAY ER(τ)
with the new value. At the same time, elements that were included into the
sequence during this run of LAY ER are extracted from the sequence and
returned to the current subset H. Thus we return to the situation with the
two possible results.

2. Set E is not empty. In that case we fix the extracted elements in
the sequence that is being formed and we declare E to be an element of
sequence of sets Γ, that is Γj+1 = E. For this set we compute F (Γj+1). Note
that F (Γj+1) > τ . Once that is done we run LAY ER(F (Γj+1)) on the set
H = Γj+1.

As a result of the first situation, the set H = Γj+1 is the kernel Γp, i.e.
p = j + 1. In the second case, when the resulting set E ⊆ H is not empty,
we move to the next (j + 1)st step with the set E. τ ′ is assigned the value
of F (H), τ is recomputed and LAY ER(τ) is run on the last set E.

Theorem 13 The set Γp obtained as the result of algorithm A1 is the defin-
ing set.

Proof: We first prove that sets Γj,j = 1, p produced by the algorithm
form defining sets from a defining sequence. It suffices to show that each of
these sets is a local maximum of the function F (H) (see the Corollary 2).
That is,

F (H) < F (Γj), ∀H ⊃ Γj, j = 1, p.

The set Γj is the result of applying procedure LAY ER(τ), so F (Γj) > τ .
Assume F (H) > F (Γj) for some H ⊃ Γj. Then F (H) > τ , implying that

π(i, H) > τ, ∀i ∈ H,

since

F (H) = mini∈H π(i, H).
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Due to monotonicity of π(i, H) we can state

π(i, W ) ≥ π(i, H) > τ, ∀i ∈ H.

This means that during the execution of the first iteration of procedure
LAY ER(τ) none of the elements of H could have been removed. For the set
of remaining elements H ′, W ⊇ H ′ ⊇ H the following also holds

π(i, H ′) ≥ π(i, H) > τ, ∀i ∈ H.

Continuing this arguments leads to the conclusion that the result of
LAY ER(τ) can only be some set H0 ⊇ H. But we are given that the
result is some Γj ⊂ H. This is a contradiction. Therefore, it must be that

F (H) < τ , i.e. F (H) < F (Γj.

The proof of the fact that ΓR = G 6⊂ Γp where G is the defining set follows
from the definition of the kernel and from the description of algorithm A1
(the second case).

Algorithm A2 for constructing maximal defining sequence (see section
3) consists of p ≤ N = |W | steps (parameter p is not foxed however but is
automatically determined in the process of execution of the algorithm). Each
step consists of two stages.

In the first stage, the set of elements remaining before step j is declared
to be a set Γj+1, in particular Γ1 = W . The value F (Γj) = mini∈Γj

π(i, Γj)
computed on the previous step (prior to the first step all the values of π(i, W ),
and also F (W ) are computed) is taken as the j-th value of threshold εj. Thus,
for all steps except the first one, the first stage is purely declarative and does
not involve any computations.

Stage 2 consist of applying procedure LAY ER(F (Γj)) to the set Γj. Two
results are possible: 1. The set E is empty. In that case Γj is the kernel, i.e.
p = j, and the algorithm is done. 2. The set E is not empty. In that case
we start (j + 1)-st step of the algorithm with the set E and the threshold
F (E) = mini∈E π(i, E).

Theorem 14 1. The result of algorithm A2 is the maximal defining se-
quence. 2. The sequence Γ1 obtained as a result of executing algorithm A1 is
a subsequence of sequence Γ2 obtained as a result of executing algorithm A2.
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Proof: 1. The fact that the constructed sequence is a defining sequence
is proved analogously to the proof in theorem 13 for sequence Γ1. It re-
mains to show that the condition (24) holds. Element αk ∈ Γj

2\Γj+1
2 is

extracted during some iteration of LAY ER(F (Γj
2)). Because of monotonic-

ity of π(i, H), and since the set Hk is a subset of θl, a result of l-th iteration
of LAY ER(F (Γj

2)) during which the element αk is extracted, it follows that

F (Γj
2) > π(αk, θl) ≥ π(αk, Hk).

Since this holds for an arbitrary choice of set Γj
2 and the element αk, the

proof is complete.
2. Based on lemma 4 the results of LAY ER(τ) on W and on any set

Γj are the same. Therefore the set Γk
2 is the result of applying procedure

LAY ER(τ) to a set W for some τ . If τ = F (Γj
2), then Γk

1 = Γj+1
2. If

τ 6= F (Γj
2) for any j, then there exist sets Γj

2 and Γj+1
2 such that

F (Γj
2) < τ, F (Γj+1

2) > τ (43)

Sequential application of lemmas in this case also leads to

Γk
1 = Γj+1

2.

Therefore any set of the sequence Γ1 is a set from the sequence Γ2, QED.
Below we describe an algorithm for extracting a so called strict defining

sequence. While its execution requires a larger number of operations that for
algorithms A1 or A2, its description is much simpler.

Algorithm A3 constructs a sequence I =< i1, .., iM > of elements of W
such that for any k, 1 ≤ k ≤ N if Hk = ik, . . . , iN then the following holds:

π(ik, Hk) = min
i∈Hk

π(i, Hk). (44)

In the situation where the minimum in (44) is attained at several elements
at the same time, any one of them is chosen. The desired set G is chosen to
be the largest set Hm for which

π(im, Hm) ≥ π(ik, Hk), ∀k = 1, N (45)

For ⊕-monotonic system minimum is substituted for maximum in (44)
and ”≤” is replaced by ”≥” in (45).

In other words, constructing a defining sequence is accomplished via se-
quential removal of an element from a set of remaining elements, i.e. elements
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ik with minimal value of π(ik, Hk) is removed from Hk on k-th step. All the
weights are recalculated after each step. The elements in the order of removal
constitute the desired sequence I and a corresponding sequence of nested sets
H =< H1, . . . , HN >, where

H1 = W, H2 = H1\i1, . . . , HN = iN . (46)

The algorithms completes when all elements of set W are arranged in
sequence I. At the same time, the extremal value of π(im, Hm) of the function
π(ik, Hk) together with the corresponding element g = Im and the set G =
Hm is recorder:

π(im, Hm) = F (G) = max
k=1,N

π(ik, Hk). (47)

The fact that G is chosen as the largest set satisfying (47), i.e. the set with
the maximal value of f=the function F (H) that occurs first n the sequence
H can be restated as follows 6:

F (Hk) < F (G), ∀Hk ⊃ G, ∀k = 1, m − 1 (48)

F (Hk) ≤ F (G), ∀Hk ⊆ G, ∀k = m, N (49)

Let us consider in more detail how the construction of the sequence of
quasi-kernels Γ =< Γj, j = 1, p > is accomplished. The construction of
sequence I of elements of W implies concurrent construction of the sequence
of nested sets H and of the scalar sequence of thresholds δ =< δ1, . . . , δN >,
where

δ1 = π(i1, W ) = F (H)δk = max[δk−1, π(ik, Hk) = F (Hk)]. (50)

The expression (50) allows us to highlight the points of sequence H that
correspond to a change (in this case to an increase) of the threshold value. If
we denote then by Γj,j = 1, p,(p ≤ N = |W |) we obtain a sequence of nested
sets Γ that is a subsequence of a subsequence of sets H for which conditions
(5) and (24). Theorem 15 shows that this is exactly the sequence Γ whose
existence is assumed in the definition of maximal defining sequence.

Theorem 15 The sequence I constructed by algorithm A3 is a maximal
defining sequence of a ominus-monotonic system < W, π >.

6For a ⊕-monotonic system instead of (48) and (49) the following inequalities hold:
F (Hk) > F (G), ∀Hk ⊃ G, ∀k = 1, m − 1 F (Hk) ≥ F (G), ∀Hk ⊆ G, ∀k = m, N
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Proof: We need to prove that sets Γj, j = 1, p of the sequence Γ obtained
in the process of constructing the sequence I satisfy properties (5), (6) and
(24) according to the definition of the maximal defining sequence.

The fact that properties (5) and (24) hold is clear since sets Γj are con-
structed by the above algorithm when the threshold value δk is increased (see
(50)). Let us prove that (6) holds. As a result of executing algorithm A3 for
constructing sequence I we have:

F (Hk) ≤ F (G), ∀Hk ⊆ G, (∀k = m, N).

We need to prove that

F (H) ≤ F (G), ∀H ⊆ G,

i.e. that this inequality is true for any subsets of G, not just for those in the
sequence H.

Assume that the opposite is true. Let H ⊂ G be such that

F (H) > F (G) (51)

Let Hn be the smallest set of sequence H containing H, i.e. Hn ⊇ H, Hn+1 6⊇
H. Clearly, in ∈ H, in ∈ Hn, in ∈ Hn+1. Then, considering the definition of
F , monotonicity property and relation (44), we can establish the following:

F (H) ≤ π(in, H) ≤ π(in, Hn) ≤ F (G)

But this contradicts (51). The proof is complete.
The described algorithm allows construction of a strict defining sequence.

Its main properties are the satisfaction of (44) and the extraction of the kernel
that satisfies (48) and (49). The application of this algorithm requires some
clarification.

Definition. Elements ik and in, k > n of the defining sequence I of a
	-monotonic system are called I-equal if

π(i)k, Hk) = π(in, Hn) = min
i∈Hn

π(i, Hn) = F (H) (52)

(Accordingly, for a ⊕-monotonic system min is substituted for max).
The algorithm A3 constructs a defining sequence exactly up to I-equal

elements. It cannot be known in advance how different the two sequence,
resulting from the choice of ik or in from some group of I-equal elements,
will be. It is known however (Theorem 9) that the sequence of quasi-kernels
of two different defining sequences coincide and therefore are independent of
a choice of I-equal elements. This result is confirmed by the following lemma.
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Lemma 6 If ik and in, k > n are I-equal elements of sequence I of 	-
monotonic system < W, π > then there can be no set ΓS in the sequence Γ
such that ik ∈ ΓS but in 6∈ ΓS. In other words, there exists a set Γj ∈ Γ such
that ik, in ∈ Γj\Γj+1 or ik, in ∈ Γp.

Proof: Assume the opposite. Let ΓS ∈ Γ such that ik ∈ ΓS but in 6∈ ΓS.
Then, clearly ΓS ⊂ Hn. Using the theorem 6 on set Hn, Hn\ΓS = ∅ we have
the following sequence of inequalities

π(in, Hn) < F (ΓS) ≤ π(ik, ΓS) ≤ π(ik, Hn).

At the same time, according to the definition of I-equal elements, we have

π(ik, Hn) = π(in, Hn)

We have a contradiction. The proof is complete.
In other words, the choice of a particular element among several I-equal

ones does not affect the construction of the sequence Γ of quasi-kernels and on
the extraction of the kernel G. At the same time, for the proofs of theorems
about the properties of monotonic systems and for practical applications
it is necessary to choose an arbitrary but fixed method of constructing a
defining sequence. We fix the following rule. Rule 1. If, in the process of
constructing a defining sequence of 	-monotonic system according to the
algorithm described above, at the n-th step we encounter I-equal elements,
we choose an element with the smallest input number, while for ⊕-monotonic
system we choose an element with the largest input number. (It is assumed
that the elements of set W are represented in a for of some list and can thus
be ordered).

The sequence I constructed according to the above algorithm, using this
rule, is called fixed.
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