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Abstract

A method for structural clustering is proposed involving data on subset-to-entity linkages

that can be calculated with structural data such as graphs or sequences or images. The method

is based on the layered structure of the problem of maximization of a set function de�ned as

the minimum value of linkages between a set and its elements and referred to as the tightness

function. When the linkage function is monotone, the layered cluster can be easily found with

a greedy type algorithm.
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1 Introduction

The problem of separation of a dense core in a given set of interrelated objects has attracted attention

of researchers in such disciplines as Operations Research (knapsack and location problems), Social

Choice (selection of representatives), Data Mining (�nding a pattern in data), Clustering (single

cluster clustering), etc. The problem is traditionally formalized in terms of a set function F (H)

de�ned on the set of subsets H of a �nite set I . The function is assumed to score the subsets

according to their \density" so that an H� maximizing F (H) can be referred to as a maximum

density core in I . Typically, �nding a solution to the maximization problem may involve enumeration

of an exponential number of subsets with regard to the cardinality of I (NP-hard problems), but

when F (H) is relatively simple, this can be done with a polynomial-time algorithm (see, for instance,

[1]{ [3]).

In particular, Mullat [1] introduced a speci�c framework for de�ning a set function (called here

the tightness function) as an integral characteristic of a function scoring linkages between subsets

and their elements. For any non-empty subset H � I , the tightness function, F�(H), is the minimum

of a monotone linkage function �(i;H) over i 2 H . The tightness functions can be maximized with

greedy-type algorithms. This framework has been e�ectively applied for �nding maximally dense

cores in such applications as ecology and organization design [1], [4].

In this paper, we introduce and explore the concept of layered cluster which involves not only

the maximally dense core of I but also a nested chain of its \shells" whose densities monotonely

decrease with the growth of the shells. This concept can be considered an abstract implementation

of the idea of multiresolutional view at the structure of a system of interrelated elements.

We de�ne a set function pattern as a subset which is strongly separated from the rest: its score,

according to the set function, decreases if any supplementary elements are added, even if some of its

elements are removed. The set of patterns, proven to be nested, is referred to as the layered cluster

if the smallest pattern is a global maximizer of the function. The existence of the layered cluster is

proven for the tightness functions of monotone set-to-element linkage functions, and a greedy type

\serial partitioning" algorithm for �nding the layered cluster is proposed.
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2 Layered patterns of a set function

When a set function F (H), H � I , re
ects the density of interrelations within sets H in such a way

that the greater F (H) the greater the density of H , one may wish to investigate relatively dense

subsets H .

Let us refer to a subset H � I as to a pattern with regard to F (H) if H is separated from the

rest in such a way that F (H) is greater than F (H 0) for any H 0 which is not part of H , that is,

F (H) > F (H 0) for any H 0 � I such that H 0 \ (I �H) 6= ;.

Thus de�ned, patterns must be chain-nested.

Assertion 1 The set of all patterns, P , is nonempty and chain-nested, that is, H1 � H2 or H2 � H1

for any H1; H2 2 P .

Proof: Indeed, if H1, H2 are patterns and H1 is not a part of H2, then F (H2) > F (H1). If,

moreover, H2 is not a part of H1, then F (H1) > F (H2). The contradiction proves the nesticity.

Besides, H = I makes the de�nition of a pattern true because of the false premise, which proves

that I is always a pattern. 2

In general, more dense subparts may occur within the smallest pattern S: nothing prevents one

or more H � S with F (H) > F (S) to exist. When this is not the case, that is, when the smallest

pattern is a global maximizer of the function F (H), the set of patterns can be considered as a

complete representation of the density structure in I . The set of patterns will be referred to as the

layered cluster of I according to function F (H) if the minimum pattern is a global maximizer of

F (H). Obviously, the layered cluster is unique.

The patterns of a layered cluster can be considered as levels of resolution of the overall similarity

modelled by the set function.

3 Monotone linkage and tightness functions

To catch the similarity structure in a system such as a digitallized image or folded protein, the

concept of an element-to-set linkage function can be utilized. A linkage function �(i;H) measures

proximity between subsets H � I and their elements i 2 H . This measure can be de�ned in

terms of pair-wise distances as, for instance, �(i;H) =
P

j2H dij , or similarities as, for instance,

�(i;H) = maxj2H sij . (Some other ways for de�ning linkage functions are considered in [5].) In

these examples, an important feature is that the linkage functions are monotone. A linkage function

� is referred to as a monotone one if for any H;G � I and any i 2 H , �(i;H) � �(i;H [G).

As an example, let us consider the set I whose similarity structure is presented by the edge-

weighted graph in Figure 1. The linkage function �(i;H) in this example is de�ned as the sum of

the weights of edges connecting i with j 2 H . For instance, in the set H = fc; d; f; jg, �(c;H) = 13,

�(d;H) = 13+8+8 = 29, �(f;H) = 8 and �(j;H) = 8. Obviously, thus de�ned �(i;H) is monotone.

A linkage function, �(i;H), can be used to estimate the overall density of a subset H � I by

\integrating" its values �(i;H) over i 2 H . In particular, an integral function de�ned as

F�(H) = min
i2H

�(i;H) (1)

will be referred to as the tightness function when � is monotone.

In the example above, F�(H) = 8 for H = fc; d; f; jg.

A property of the tightness function (easily following from the monotonicity of �) is that it

satis�es the so-called quasi-convexity condition: for any H;G � I ,

F (H [G) � min(F (H); F (G)): (2)

Actually, inequality (2) is a characteristic of the tightness functions [6], [3], but this result will not

be used in this paper.
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Figure 1: Weighted graph generating the summary linkage function �.

4 Minimum pattern of a tightness function

The following statement shows that the set of patterns of a tightness function F (H) is always a

layered cluster.

Assertion 2 If F (H) is a tightness function, then its minimum pattern is the largest global maxi-

mizer of F (H) over all H � I (with regard to the set-theoretic inclusion).

Proof: Let S be the minimum pattern in the chain nested set of patterns of F (H). If S is not a global

maximizer of F , then F (H) > F (S) for some H � I . In fact, all such H must fall within S, because

S is a pattern. Let us take a maximal subset H � S in the set of all H such that F (H) > F (S) and

prove that H is a pattern as well. Indeed, let us take any S0 � S such that S0 \ (I �H) 6= ;; the

existence of such S0 follows from the fact that H does not coincide with S. Then F (H) > F (H [S0)

because of the assumed maximality of H within S. But F (H [ S0) � min(F (S0); F (H)) according

to (2), that is, F (H) > F (S0). Let us consider now an S0 which is not contained in S and still

satis�es the condition S0 \ (I �H) 6= ;. (This may only happen when S is not equal to I .) By the

de�nition of S0, F (S) > F (S0) because S is a pattern. Therefore, F (H) > F (S0). This implies that

H is a pattern, which contradicts the assumption of minimality of S. Thus, no H � S exists with

F (H) > F (S), which implies that S is the maximum global maximizer of F (H). 2

5 Finding layered clusters with serial partitioning

Let us denote by m(H) the set of elements i 2 H at which the value of F (H) is reached:

m(H) = fi : �(i;H) = min
j2H

�(j;H)g:

Obviously, m(H) is not empty if H is not empty. Iteratively applying the operationm to I , I�m(I),

etc., one can build what will be referred to as the serial partition of I .

Algorithm "Serial Partitioning".

Input: Monotone linkage function �(i;H) de�ned for all pairs i;H such that i 2
H � I .
Output: Serial partition M = (M0;M1; :::;Mn) of I along with class values
F = fF0; F1; :::; Fng de�ned as follows.

Step 0. Initial setting: Put t = 0 and de�ne I0 = I .

Step 1. Find class Mt = m(It) and de�ne It+1 = It � Mt. De�ne class value
Ft = F�(It) = �(i; It) for i 2Mt.

Step 2. If It+1 = ;, end. Otherwise, add 1 to t and go to Step 1.

3



This algorithm extends the traditional greedy procedure [7] to the situations in which:

(1) entities are selected according to a function of similarity between sets and their elements, the

linkage function, rather than to the set function optimized;

(2) at each step, all the minimizing elements are selected rather than just one of them.

The layered cluster of F�(H) can be easily extracted from the serial partition M thus produced.

From the sequence F = fF0; F1; :::; Fng, pick up the smallest index t� among those maximising

Ft, t = 0; 1; :::; n. Then apply the same selection rule to the starting part of the sequence F ,

F t� = (F0; :::; Ft��1) obtained by removing Ft� and all the consequent elements. Reiterating this

pick-and-removal process until all elements of F are removed, we obtain set T � of all the picked up

indices.

The sets It� , t
� 2 T �, form the layered cluster of F� .

Assertion 3 Subset H is a pattern if and only if H = It� for some t� 2 T �.

Proof: First, let us prove that It� is a pattern for any t� 2 T �. Indeed, for any H � I containing

elements outside of It� there exists the minimum It such that H � It and t < t�. The minimality of

It implies that m(It) \H 6= ;. Thus, F (H) � �(i;H) � �(i; It) = F (It) = Ft where i 2 m(It) \H .

But Ft < Ft� by the de�nition of T �; therefore, F (H) < Ft� , which proves this part of the statement.

Now, letH � I be a pattern that doesn't coincide with It� for any t
� 2 T �. Let It� be the smallest

of the sets It with t 2 T � containingH . There can be eitherm(It�)\H = ; or not. In the latter case,

for an i 2 m(It�)\H , F (H) � �(i;H) � �(i; It�) = F (It�), which contradicts the assumption that H

is a pattern. In the former case, H must be part of an It with t > t�. Let It be the smallest of these

sets so that m(It)\H 6= ;. Then, for an i 2 m(It)\H , F (H) � �(i;H) � �(i; It) = F (It) � F (It�)

which contradicts the assumption that H is a pattern. 2

Let us apply the serial partitioning algorithm to the example of summary linkage function in

Figure 1. We can see that m(I) = fa; bg because �(a; I) = �(b; I) = 24 is the minimum of �(i; I)

over all i 2 I . With a; b removed from I , the minimum of �(i; I � fa; bg) is reached at l with

�(l; I � fa; bg) = 6. The next entity to be removed is c, with �(c; I � fa; b; lg) = 26. In the

remaining set I3 = I � fa; b; l; cg, obvious leaders are d and e with minimum �(d; I � fa; b; l; cg) =

�(e; I � fa; b; l; cg) = 16. This yields I4 = ff; i; g; h; j; kg with the minimum link, 27, reached at

m(I4) = fj; kg. At what remains, I5 = ff; i; g; hg, m(I5) = ff; g; hg with the link equal to 30. This

leaves I6 = fig and no nonzero links within I6 so that F�(I6) = 0. The results can be represented

as a labelled sequence,

(ab)24(l)6(c)26(de)16(jk)27(fgh)30(i)0;

where the parentheses contain sets Mt = m(It) removed at each step of the algorithm, their order

re
ecting the order of removals, and the labels corresponding to the values of the linkage function

F�(It) for t = 0; 1; :::6. The maxima are 30, 27, 26, and 24; the corresponding patterns, H3 =

ff; g; h; ig, H2 = H3 [ fj; kg, H1 = H2 [ fc; d; eg, and H0 = I , form the layered cluster.

6 Universality of the monotone linkage functions

Let us consider a chain-nested set P = fH0; H1; :::; Hpg where H0 = I and Ht � Ht�1 for all

t = 1; :::; p. The question is if there exists a monotone linkage function �(i;H) such that P is the

layered cluster of F�. The answer is yes.

Let us de�ne Gt = Ht � Ht+1 for each t = 0; 1; :::; p � 1, and Gp = Hp. Obviously, the set

G = fG0; G1; :::; Gpg forms a partition of I .

Let us de�ne now a linkage function, �(i;H), by the condition: �(i;H) = t if i 2 Gt and Ht � H

(t=1,..., p); otherwise, �(i;H) = 0. This linkage function is monotone by its de�nition. Its tightness

function, F�(H), is equal to 0 for all H � I except for the cases when H = Ht and F�(Ht) = t

(t = 1; :::; p). Set function F� can be referred to as the characteristic function of the chain nested set

P . When p = 1, F� is the conventional characteristic function of H1: F�(H) = 0 for all H except

4



for the H = H1; F�(H1) = 1 . Since P is obviously the pattern set of F�, the following statement

is proved.

Assertion 4 The characteristic function F� of a chain-nested set P is a tightness function whose

layered cluster is P .
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the subsets according to their "density" so that an .If* maximizing F(I/) can be referred to as
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involve enumeration of an exponential number of subsets with regard to the cardinality of I (Np-
hard problems), but when F(H) is relatively simple, this can be done with a polynomial-time
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subsets and their elements. For any nonempty subset H g I, the tightness function, P"(H), is
the minimum of a monotone linkage function r(i,, H) over i € H. The tightness functions can be
malcimized with greedy-type algorithms. This framework has been effectively applied for finding
malcimally dense cores in such applications &s ecology and organization design [1,2,5].

In this paper, we introduce and explore the concept of layered cluster which involves not only
the maximally dense core of / but also a nested chain of its "shells" whose densities monotonely
decrease with the growth of the shells. This concept can be considered an abstract implementation
of the idea of multiresolutional view at the structure of a system of interrelated elements.

We define a set function pattern as a subset which is strongly sepa,rated from the rest: its
score, according to the set function, decreases if any supplementary elements are added, even if
some of its elements are removed. The set of patterns, proven to be nested, is referred to as the
layered cluster if the smallest pattern is a global maximizer of the function. The existence of the
layered cluster is proven for the tightness functions of monotone set-to-element linkage functions,
and a greedy type "serial partitioning" algorithm for finding the layered cluster is proposed.

2, TAYERED PATTERNS OF A SET FUNCTION
When a set function F(I{), H g I , reflects the density of interrelations within sets If in such

a way that the greater F(I/) the greater the density of IJ, one may wish to investigate relatively
dense subsets I/.

Let us refer to a subset H e I as to a pattern with regard to F(I{) if I{ is separated from the
rest in such a way that f(H) is greater than F(H') for any Il' which is not part of -E[, that is,
F(II) > F(II') for any H' E f such that ^EI/ n (/ - H) +9.

Thus defined, patterns must be chain-nested.

Assnnrtou 1. The set of all patterns, P, is nonempty and chain-nuted, that is, I{r e H2 or
Hz 9 H1 for arV Ht, H2 € P.

Pnoor'. Indeed, if ffl , H2 a;te patterns and IJr is not a part of. H2, then F(Hr) > F(IIr). If,
moreover, IIz is not a part of Il1, then F(flr) > F(H).The contradiction proves the nesticity.
Besidas, H : I makes the definition of a pattern true because of the false premise, which proves
that f is always a pattern. I

In general, more dense subparts may occur within the smallest pattern S: nothing prevents
the existence of one or more H c S with F(H) > f(S). When this is not the case, that is,
when the smallest pattern is a global maximizer of the function F(I{), the set of patterns can
be considered as a complete representation of the density structure in f. The set of patterns will
be referred to as the layered cluster of .[ according to function F(If) if the minimum pattern is
a global marcimizer of F(Il). Obviously, the layered cluster is unique.

The patterns of a layered cluster can be considered as levels of resolution of the overall similarity
modelled by the set function.

3. MONOTONE TINKAGE AND TIGHTNESS FUNCTIONS

To catch the similarity structure in a system such as a digitallized image or folded protein,
the concept of an element-to-set linkage function can be utilized. A linkage function r(i,, H)
measures proximity between subsets H g / and their elements i € H. This measure can be
defined in terms of pair-wise distances as, for instance, zr(i, H) = Dr* dii, or similarities as, for
instance, r(i,H): IrI&)cjEnsig. (Some other ways for defining linkage functions are considered
in [6J.) In these examples, an important feature is that the linkage functions are monotone.
A linkage function n is referred to as a monotone one if for any H,G C f and any i € H,
r ( i , , H )  S n ( i , H U G ) .

As an example, let us consider the set .f whose similarity structure is presented by the edge-
weighted graph in Figure t. The linkage function zr(i, H) in this example is defined as the sum
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Figure l. Weighted grsph generating the summary linkage function r.

of the weights of edges connecting i with j e H. For instance, in the set H - {",d,f,j},
n(c ,H)  = 13,  n(d,H) :13+8+ 8:29,r ( f  ,H)  = 8,  and r ( i ,H)  -8,  Obviously ,  thus def ined,
n(i, H) is monotone.

A linkage function, r(i, H), can be used to estimate the overall density of a subset If E I by
"integrating" its values n(i, H) over i e H, In particular, an integral function defined as

F"(H): It'f r(i, H) (1)

will be referred to as the tightness function when n is monotone.
In the example above, F"(H): 8 for H : {c,d, f , j}.
A property of the tightness function (easily following from the monotonicity of zr) is that it

satisfies the socalled quasi-convexity condition: for any H,G ! I,

F(H u c) 2 min(F( H), F(G)), (z)

Actually, inequality (2) is a characteristic of the tightness functions |17,4), but this result will not
be used in this paper.

4. MINIMUM PATTERN OF A TIGHTNESS FUNCTION
The following statement shows that the set of patterns of a tightness function F(II) is always

a layered cluster.

AsssRTtoN 2. If F(H) is a tightness function, then its minr'mum pattern is the largest globat
maximizer of F(H) over aII H E I (with regard to the set-theoretic inclusion).
Pnoor'. Let ,9 be the minimum pattern in the chain nested set of patterns of F(I/). If S is
not a global maximizer of F, then F(H) > f(S) for some H g L In fact, all such Il must
fall within ,S, because ̂9 is a pattern. Let us take a maximal subset H c S in the set of all H
such that F(f/) > F(S) and prove that f/ is a pattern as well. Indeed, let us take any ^g' e ,S
such that ^9/ n (f - H) * 0; the existence of such ̂ 9' follows from the fact that If does not
coincide with ,5. Then F(H) > F(H u S') because of the assumed ma:cimality of .EI within ^S.
But F(f/ U S') ) min(F(S'),F(H)) according to (2), that is, F(II) > F'(,9'). Let us consider
now an S' whictr is not contained in S and still satisfies the condition ,S'n (f - H) + 0. (This
may only happen when ,9 is not equal to /.) By the definition of ,9', r'(fl > tr'(S') because ̂g
is a pattern. Therefore, F(.[I) > F(S'). This implies that ff is a pattern, which contradicts the
assumption of minimality of ,5. Thus, no I{ C ,S exists with F(H) > tr'(.9), which implies that .g
is the ma:<imum global marcimizer of F(If).
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5. FINDING LAYERED CLUSTERS
WITH SERIAL PARTITIONING

Let us denote by m(H) the set of elements i € H at which the value of F(fl) is reached

Obviously, rn(H) is not empty if IJ is not empty. Iteratively applying the operation m to I,
I - m(I), etc., one can build what will be referred to as the serial partition of .[.

Algorithm ('Serial Partitioningt'

Input: Monotone linkage function r(i,, H) defined for all pairs i,If such that i e H E I.
Output :  Ser ia lpar t i t ion M -  (Mo,My. . . ,Mn) of  . Ia longwi thc lassvalues F:  {F0,Fr , . . . ,

Fr) defined as follows.

Step 0. Initial setting: put t : 0 and define Io = I.
Step t. Find class M6 - m(It) and define /t+r = It - Mt. Define cla,ss value Ft - F*(I) :

r(i,I) for i e M1,
Step 2. lf. I2q1 :0, end. Otherwise, add 1 to t and go to Step l.

This algorithm extends the traditional greedy procedure [8] to the situations in which
(1) entities are selected according to a function of similarity between sets and their elements,

the linkage function, rather than to the set function optimized;
(2) at each step, all the minimizing elements are selected rather than just one of them.

The layered cluster of Fr(fI) can be easily extracted from the serial partition M thus produced.
Flom the sequence Il - {F0,Fl,. ..,4}, pick up the smallest index t* among those maximising

Ft, t : 0,1 ,. . . ,fr. Then apply the same selection rule to the starting part of the sequence F,
Ft' : (Po, . . . , Fr-1) obtained by removing 4. and all the consequent elements. Reiterating
this pick-and-removal process until all elements of F are removed, we obtain set T* of all the
picked up indices.

The sets Iy,t* € f*, form the layered cluster of, Fo.

Asspnrtox 3. Subset fr is a pattern if and only if H : It for sorne t, e T*.
Pnoor'. First, let us prove that I1. is a pattern for any f* e T*. Indeed, for any H c I
containing elements outside of. Iy there exists the minimum.Il such that H e It and t < t*. The
minimali ty of 11 implies that m(I)nH +0. Thus, F(I{) 1r( i ,H) S r( i , , l ) :  F(It)  :  Ft,
where i' e rn(I) n H. But F' < 4., by the definition of T*; therefore, F(If) 1 F1., which proves
this part of the statement.

Now, let fJ C I be a pattern that does not coincide with /t. for any t* € ?*. Let .It* be
the smallest of the sets I with t €, T* containing H. There can be either m(It ) n H = 0
or not. In the latter ca.se, for i € m(Iy) nrr, r(H) S n(i,H) S r(i,Iy) : F(4.), which
contradicts the assumption that I/ is a pattern. In the former case, I/ must be part of, 12 with
t> t*.  Let.I l  be the smallestof thesesets so thatm(Is)nH +0.Then, for f  € m(It)f l I f ,
F(I/) 3 r(i,H) 1r(i,/t) = F(/r) S P(/r.) which contradicts the assumption that.E[ is a
pattern. 

t
Let us apply the serial partitioning algorithm to the example of summary linkage function in

Figure 1. We can see that rn(/) : {a, b} because r(a,I) : r(b,I) : 21, is the minimum of zr(i, f)
over all i e I. With a, b removed from .I, the minimum of zr(i, I - {o,b}) is reached at I with
r(L,I - {o,b}) : 0. The next entity to be removed is c, with r(c,I - {o,b,r}) :26. In the
remaining set Is : I - {o, b,l,c},, obvious leaders are d and e with minimum n(d,,1- {o, b, l, c}) =
r (e , I  - {o ,b , l , c } ) :16 .  Th isy ie lds . I4 :  { f , i , g ,h , j , k }w i th themin imuml ink ,2z , reacheda t
m(Ia) : U, k). At what remains, .Is - {f ,i,g,h},, m(I): {.f, g,h} with the link equal to 80.

rn(H): 
{, 

: r(i, H) :p,f 'U, ", 
}
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This leaves Ia : {i} and no nonzero links within /o so that F"(/6) : 0. The results can be

represented as a labelled sequence'

1oa1 
24 

1l)o (c)26 (ael t u (j tt)t' (fsh) 30 (i)0,

where the parentheses contain sets M1 - m(It) removed at each step of the algorithm, their
order reflecting the order of removals, and the labels corresponding to the values of the linkage
function F"(It) for t : 0, 1, . . . , 6. The ma:cima are 30,27,26, and 24; the corresponding patterns,
Hs: {f  ,g,h, i} ,  Hz: I f3 u { j 'k},  Hr: Hzu {",d,e}, and Ho: f ,  form the layered cluster.

6. UNIVERSALITY OF THE
MONOTONE LINKAGE FUNCTIONS

Let us consider a chain-nested set P: UJo, Hr,...,Ho\ where Ho:.I and Ht C Ht-t for all
t:1, ...,p. The question is if there exists a monotone linkage function r(i,H) such that P is
the layered cluster of Fo. The answer is yes.

Let us define Gt : Ht - Ht+r for each f = 0, 1,... ,P - L, and G, - Ho, Obviously, the set
G : {Co,Gr,. . . ,GoI forms a partition of f.

Letusdefinenov/al inkagefunction, X$,H),bythecondit ion: XQ,I/) : t i f i  e Gtand Hte H
(t - 1,...,p); otherwise, X(i,H):0. This linkage function is monotone by its definition. Its
tightness function, F*(H), is equal to 0 for a[ If ! f except for the cases when H - ]/t and
Fr(H) : t (t - 1, . . . ,p), Set function F1 can be referred to as the characteristic function of the
chain nested set P. When p: L, F* is the conventional characteristic function of H; F*(H) = 0
for all .EI except for the H - H; F*(Hr) - 1 . Since P is obviously the pattern set of F'*, the
following statement is proved.

AsspnrtoN 4. The characteristic function F* of a chain-nested set P b a tightness functjon
wiose layered cluster is P.
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