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We consider monotone system in which the value of the extremand criterion is determined by 
the worst element in some part of a given subset. Examples of practical data aggregation 
problems leading to such system are given. It is shown that the so-called convex geometries 
(antimatroids) constitute the accessible family of subsets that are responsible for the 
effectiveness of the extermization algorithms of such criteria. 

1. INTRODUCTION 

Various aggregation problems for finite a finite set of empirical elements (some problems 

of cluster analysis, simultaneous aggregation of objects and attributes using the data matrix, 

identification of analogs, etc) may be formulated as problems of extremizing the 

characteristic functions of monotone systems [1]. This formalization is convenient because it 

leads to simple polynomial-time algorithm solving these applied problems by a uniform 

procedure. 

The construction of these algorithms relies on quasiconvexity of the characteristic 

functions of monotone systems. Yet it remains unclear what properties of monotone systems 

are in fact responsible for effective extremization of quasiconvex functions. It is desirable to 

identify these properties and utilize them to construct a generalization of monotone systems. 

The well-known result of Rado and Edmons regarding extremization of linear function on 

an independence system provides an example of the description of systems whose properties 

guarantee effective extremization of characteristic functions. A systematic comparison of this 

example with the monotone system construction has established an analogy between 

matroids and antimatroids. This analogy has produced the sought generalization of monotone 

systems and a Rado-Edmons type description of the problem of extremization of quasiconvex 

functions of such systems. 
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2. STATEMENT OF THE PROBLEM 

To construct a monotone system on a finite set W , we define a parametric family of 

functions )H,x(π  ( H  is a parameter WH ⊆ , Hx ∈ ) such that all WH'Hx ⊆⊆∈  we 

have 
 )H,x()'H,x( ππ ≤ . (1) 

We then use this family to construct a characteristic estimate )H(F  of an arbitrary set 

WH ⊆  in the form 

 
Hx

)H(F
∈

= min )H,x(π . (2) 

The problem is to maximize the characteristic function (2). This problem is adapted to 

various applications by varying the description of the set W  and the construction of the 

function )H,x(π  given in this description. In all these cases, however, the estimate of the 

subset H  is constructed as the estimate of the “worst” element by (2). 

Yet in some applications the estimate of H  based on the worst element in this subset 

does not correspond to the physical content of the problem. It is required to estimate the 

subset using the elements from some part of the subset, i.e., the characteristic function should 

be defined in the form 

 
)H(x

)H(F
ϕϕ ∈

= min )H,x(π , (3) 

where WW: 22 →ϕ  is the so-called choice operator [2] satisfying the condition 

H)H( ⊆ϕ . 

A function of the form (3) will be called the generalized (ϕ -generated) characteristic 

function of the monotone system F,,W π . 

Consider an example of a data analysis problem, which corresponds to this definition of 

characteristic function. 

Example. W  is a set of points in the Euclidean space nℜ  and )H(ϕ  is the set of 
extreme points of the set H  (the convex hull of H ). Define ∑

∈
=

Hy
xyr)H,x(π  where r  is 

the Euclidean distance. Then the maximization problem (3) involves finding *H  in which all 

extreme points are maximally distant. Substantively, *H  generates the sharpest partition 

(compared to other sets) into a “core” ( ))H(H * ϕ−  and a “shell” ( ))H( *ϕ . 
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The introduction of generalized characteristic functions naturally leads to examination 

special families of subsets – convex geometries (antimatroids) [3,4]. The generation of 

antimatroids is described in Sec.2, where we also prove that it is only of these systems that 

generalized characteristic functions have the quasiconvexity property, which is important for 

the construction of effective extremization algorithms. 

In Sec. 3 we construct a maximization algorithm for the functions (3). Comparison of this 

algorithm with greedy procedure of extremization of the sum-of-weights function establishes 

an analogy between the role of antimatroids among all accessible [4] systems and the role of 

matroids among all independence systems [5,6]. We prove the duality theorem for the analog 

of the Lagrange function for the extremization of functions (3) on convex geometries. We 

conclude Sec. 3 with an examination of the problem of isolating the best (in this sense) 

submodel of an econometric model identified from statistical data. 

The theorems are proved in the Appendix. 

3. CONVEX GEOMETRIES  AS  DOMAINS  OF  DEFINITION  OF  

GENERALIZED CHARACTERISTIC FUNCTION 

Let )H(ϕ  be a choice operator. We use it to construct a family B  of subsets H  

( WH ⊆ ) by the following algorithm. 

Generation Algorithm (GA ) 

Step 1. B∈W . 

Step i. Enumerate all the sets H  whose membership in B  was established in step 
)i( 1− ; each of these subsets generates )H(ϕ  subsets of B  by the condition 

B∈−⇔∈ )xH()H(x ϕ ; if step i  does not add new nonempty subsets to B , then stop; 

otherwise to step 1+i . 

Definition 1. The system ( )B,W  constructed by GA  is called ϕ -generated. 

It is easy to see that a ϕ -generated system has the following properties, which are 

essential for our analysis:1 

                                                           
1 In what follows, { }  are omitted from the notation of single-element sets { }x . 
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1) B∈W ; 

2) B∈∀ H , ∅≠H  we have ( ) )H(xxH ϕ∈⇔∈− B ; 

3) B∈∀ H , ∅≠H  there is HWx −∈  such that B∈∪ xH . 

For any set system ( )B,W  having property 3), an operator ϕ  can be constructed by rule 

2). Moreover, property 1) also follows from 3). Applying these considerations to GA , we 

obtain 

Proposition 1. The set system ( )B,W  is ϕ -generated if and only if it satisfies 

property 3). 

Definition 2. The system ( )B,W  is called complementary to ( )B,W  if 

{ }BB ∈−= HWH  . 

Definition 3 [4]. The set ( )F,W  is called accessible if: 

1) F∈∅ ; 

2) F∈∀ H , ∅≠H  there exists Hx ∈ , such that F∈− xH . 

Note that in this definition property 1) follows from 2). Comparison of property 2) of 

Definition 3 with property 3) of Definition 1 leads to 

Proposition 2. The system ( )B,W  is ϕ -generated if and only if the complementary 

system ( )B,W  is accessible. 

Definition 4 [2]. The operator ϕ  is called hereditary on the set system ( )P,W  if 'H∀ , 

P∈H  we have 

  ( ) )'H()H('HH'H ϕϕ ⊆∩⇒⊆ . (4) 

It is easy to check that all operators )H(ϕ  used in our examples (see Introduction and 

the end of Sec. 3) are hereditary. 

Definition 5 [4]. An accessible set system closed relative to union is called an 

antimatroid; the complementary system of an antimatroid is called a convex geometry. 
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THEOREM 1. The set system ( )B,W  is ϕ -generated by some hereditary choice 

operator ϕ  if and only if it is a convex geometry. 

From the definition of hereditary operator ϕ  and the fact that the system generated by a 

hereditary operator ϕ  is a lower semilattice 2 we easily obtain 

Proposition 3. Let ( )B,W  be the system generated by the hereditary operator ϕ . Then 

B∈∀ B,A , such that AB <  we have ( ) ∅≠−∩ BA)A(ϕ . 

Remark. Antimatroids are a particular case of greedoids, which have been studied 

by many authors, e.g., in [4, 7-10]. A greedoid is an accessible system 

( )F,W  with the exchange property: 

F∈∀ B,A , such that BA <  there exists ABx −∈  such that ( ) F∈∪ xA . 

It is easy to show that a set system is a greedoid if and only if its complementary system 

is ϕ -generated by the operator ϕ  that satisfies property (a). 

Definition 6. The family { }∅=∈= )H(,HH ϕBM  is called the set of dead-end 

vertices of the system ( )B,W , and the system ( )MB −,W  is called a 

ϕ -generated system without dead-end vertices. 

On the system ( )MB −,W  we define the function 

  
)H(x

)H(F
ϕϕ ∈

= min )H,x(π , MB −∈H , (5) 

which is called ϕ -generated characteristic function. 3 

Definition 7. The function )H(P  defines on a ϕ -generated set system without dead-

end vertices ( )MB −,W  is called quasiconcave if for all triples of sets 

( )2121 HH,H,H ∪  such that all their elements are contained in the 

family ( )MB −  we have ( ))H(P),H(Pmin)HH(P 2121 ≥∪ . 

                                                           
2 The fact that the family B  is a lower semilattice W2  is established in the proof of Theorem q in the 

Appendix. 
3  The function (5) is obviously a restriction to the family ( )MB −  of the generalised characteristic function 

(3) defined on the entire Boolean W2  if )H,x(π  satisfies condition (1); in what follows, we consider only 

such functions )H(Fϕ . 
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We know [11,12] that if H)H( =ϕ  and )H,x(π  satisfies condition (1), then )H(Fϕ  

is quasiconcave on the entire Boolean W2 ; in [13] this property of )H(Fϕ  with 

H)H( =ϕ  is essentially used in the construction of maximization algorithms on the entire 
W2  and on arbitrary upper subsemilattices of W2 . 

Fix a choice operator ϕ . Assume that the system ( )MB −,W  generated by this ϕ  
contains only one triple ( )2121 HH,H,H ∪  such that 

  ∅≠1H , ∅≠2H  and MB −∈∪ 2121 HH,H,H . (6) 

Then we have the following theorem. 

THEOREM 2. For the ϕ -generated characteristic function of any monotone system 
[i.e., a monotone system with an arbitrary function (1)] to be quasiconcave on ( )MB −,W , 
it is necessary and sufficient that ϕ  is a hereditary operator on ( )B,W . 

We have thus established a correspondence between the property of quasiconcavity for 

the functions (5) and the property of being a convex geometry for ϕ -generated set systems. 

This correspondence is essentially used in the next section, which considers extremization of 

the functions (5). 

4. MAXIMIZATION ALGORITHMS FOR GENERALIZED 
CHARACTERISTIC FUNCTIONS AND PROPERTIES OF THEIR 
EXTREMAL SUBSETS 

Consider a procedure (we call it F -procedure) which, given the ϕ -generated function 

ϕF  of the monotone system ϕπ F,,W , isolates a unique element *H  on the ϕ -generated 

system ( )MB −,W . 

F -Procedure. 

0. 1←i , WHi ← . 
1. Choose an arbitrary )H(x ii ϕ∈  which satisfies the system inequalities 

)H,y()H,x( iii ππ ≤  for all )H(y iϕ∈ . If ∅=)H( iϕ , then ( )1−← im  and 
go to 4. 

2. iii xHH −←+1 , 1+= ii . 
3.  Go to 1. 
4.  Find argH * =

m,i
max

1=
)H,x( iiπ  that corresponds to the minimum number in the 

series m,...,,21 on which this maximum is attained. 

This algorithm in a certain sense is an antigreedy procedure: instead of adding the best 

element y  to an existing set (greedy), it removes the worst element from the existing set. 4 

                                                           
4  Such algorithms are called “worst off greedy” in [9]. 
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THEOREM 3. The result *H  produced by the F -procedure is a solution of the 
maximization problem of the ϕ -generated characteristic function 

)H(Fϕ  for any monotone system ϕπ F,,W  on the ϕ -generated 

system ( )MB −,W  if and only if the choice operator ϕ  is hereditary 
or, in other words, the system ( )MB −,W  is a convex geometry. 

Theorem 3 is an analog of the well-known result of Rado and Edmonds [5,6] on the 

relationship of the greedy algorithm to a set system called matroid. In order to trace directly 

this analogy, we constructed Table 1 in which the left column lists the main elements from 

[5,6] and the right column lists their analogs in our problem. 

Note that the F -procedure (the right-hand column in Table 1) differs from greedy 

algorithm (the left-hand column) in that, first, it does not check in step 1 for nonnegativity of 

the function value on the discarded element. Another essential difference is the presence of 

step 4 in the F -procedure, i.e., contrary to the greedy algorithm, which constructs only a 

segment of the maximum chain whose leading set is the solution, the F -procedure 

constructs the entire maximum chain and only then selects a solution from this chain. 

Goecke’s modified greedy procedure [10] for the maximization of a linear objective 

function differs from the standard greedy procedure in these two respects. 

Goecke’s Procedure. 

0. 1←i , ∅←iI . 

1. Choose ii IWx −∈  such that F∈∪ ii xI  and )y()x( i ωω ≥  for all iIWy −∈ ; if 

no such ix  exists, then set )i(m 1−←  and go to 4. 

2. iii xII ∪←+1 , 1+← ii . 

3. Go to 1. 

4. Find argI* =
m,i

max
1=

)I( iω , corresponding to the minimum i . 

A generalization of the Rado-Edmods theorem for this procedure is proved in [10]. 5 

                                                           
5  Thus, there is a complete analogy between our results and the results of [10]. Matroids, however, are better 

known object, and for this reason Table 1 presents the analogy with the results [5,6]. 
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TABLE 1 

Matroids Convex geometries 

1) Independence system ( )F,W : F∈∅  and for 
each F∈I and every Ix ∈ , F∈− xI . 

1) ϕ -generated system 

2) Matroid: a) independence system, 
   b) exchange property: if F∈B,A  and 

BA <  then there exists ABx −∈  
such that F∈∪ xA  

2) Convex geometry: 
a) ϕ -generated system 
b) ϕ  a hereditary operator 

3) Linear set objective function: 
 ∑

∈
=

Ix
)x()I( ωω , F∈I  

3) Quasiconcave generalized 
characteristic function of 
monotone system (5) 

4) Greedy algorithm: 
0. ∅←I  
1. Choose IWx −∈  such that F∈∪ xI , 

0≥)x(ω ; )y()x( ωω ≥  for all 
IWy −∈  such that F∈∪ yI ; if such x  

does not exists, then IIW ←  and STOP. 
2. xII ∪← . 
3. Got to 1. 

 WI  is the solution. 

4) F -procedure (antigreedy 
algorithm) 

5) Rado-Edmonds theorem: The result WI  
produced by greedy algorithm is the solution of 
the maximization problem for any linear 
objective function on the independence system 
( )F,W  if and only if this system is a matroid. 

5) Theorem 3 

Greedoids play the role of independence systems and a special class of Gaussian 
elimination greedoids plays the role of matroids. These Gaussian elimination greedoids are 
defined as follows: 

a) F  is a greedoid; 

b) for any F∈B , such that Bz ∈ , By,x ∉ , it follows from ( ) { } F∈∪− y,xzB  that 
either ( ) F∈∪− yzB , or F∈∪ yB . 

 It is easy to see that if the hereditary operator is defined on the entire Boolean W2  and 
it additionally satisfies the nonempty choice property 

  ∅=⇔∅= H)H(ϕ  (7) 

then the set system ( )B,W  generated by this operator is the union of some collection of 

maximum chains on W2 . 
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Proposition 4. If the hereditary operator ϕ  satisfies condition (7) on the Boolean W2 , 

then the F -procedure maximizes the function ϕF  (5) on the set system ( )∅−W,W 2 . 

This proposition easily follows from the maximality of the chains and from the fact that 
in each step the F -procedure removes an element kx  from the set kH  which is 
“unpromising” on the entire interval [ ]kk H,x . This proposition is obviously essential for 

algorithmic solution of the problem considered in our examples (see Introduction and the end 
of Sec. 3). 

The sequence of sets ( )mH,...,H,H 21  and elements ( )mx,...,x,x 21  from F -procedure 

will be called defining sequence, by analogy with [1], where such constructs are used in the 
algorithm extremizing the characteristic function F  (2) for ordinary monotone systems. 

The next theorem characterizes the solutions of the maximization problem for the 
function (5). 

THEOREM 4. Let ( )B,W  be a ϕ -generated system and ϕ  a hereditary operator on 

this system. Then we have the following assertions: 

1) there exists a unique maximum-cardinality solution H
!

 of the maximization problem 
for ϕF  (5) on ( )MB −,W ; 

2) H
!

 belongs to any defining sequence constructed by the F -procedure; 

3) any solution of the maximization problem for ϕF  (5) on ( )MB −,W  is a subset of 

the set H
!

; 

4) if 1H  and 2H  are solutions of the maximization problem ϕF  (5) on ( )MB −,W  
and B∈∪ 21 HH , then 21 HH ∪  is also a solution of this problem. 

Denote by Ω  the set of all sequences of the elements of the sets 0HW −  that are 

discarded by the GA  during the construction of ( )B,W . Here 0H  is the zero of sublattice 

B  Define the function of two variables Π : ( ) ℜ→−× MBΩ  using the function 

)H,x(π  that satisfies (1): 

  )H,x()H,J( H,JπΠ = , 

where H,Jx  is the first element of the set )H(ϕ  that occurs in the sequence Ω∈J . The 

following theorem shows that the function Π  acts as the Lagrange function 6 for the 
function )H(Fϕ . 

                                                           
6  The results of this section are a generalization and refinement of the results of [1,4]. In the construction of the 

duality theorem in [14] it is stated that the scheduling theorems proved in [15] are corollaries of the assertion 
that the F -procedure and the duality theorem hold for an arbitrary ϕ -system. Our paper shows that this 
assertion is not true. Yet the results of [15] follow directly from Theorems 3 and 5 of this section. 
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THEOREM 5. The subset *H  is a solution of the maximization problem for )H(Fϕ  on 

the system ( )MB −,W , if and only if there exists a sequence Ω∈*J  such that for all 

Ω∈J , MB −∈H  we have 

  )H,J()H,J()H,J( **** ΠΠΠ ≥≥ . (8) 

COROLLARY. The defining sequence ( )mx,...,x,x 21  constructed by the F -procedure 

is the left segment of the sequence *J  that satisfies (8). We also have the equality 

  )H,J()H(F *** Πϕ = . 

In conclusion, let us illustrate the application of the proposed construction in economic 

modeling [16]. Assume that the elements of the set W  are the nodes of some economic 

system and the interaction between these nodes are described by the loopless directed graph 

( )G,W  where G  is the set of arcs. The system ( )G,W  is connected with the external 

environment (other systems) in the following way. External actions may be applied to each 

node, but there is a distinguished  set of outputs W)W( ⊆ϕ  which may communicate with 

the environment, i.e., deliver the products of the system’s activity to the outside world. 

A subsystem of the system ( )G,W  is any subgraph ( )G,H , where WH ⊆ . The 

external environment of the subsystem ( )G,H  is the external environment of the system 

( )G,W  plus the elements of the subset HW − . An output of the subsystem ( )G,H  is 

therefore an element y  of the set H  such that either )W(y ϕ∈  or an arc leads from y  to 

HW − . The set of outputs of the subsystem ( )G,H  will be denoted by ( )H . 

The operator ϕ  defined in this way is clearly a hereditary choice operator. Also assume 

that it satisfies property (7). This is a natural property, e.g., for production systems: any 

subsystem communicates with its external environment. 
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We say that the node Hx ∈  influences the node Hy ∈  if there is a path from x  to y  in 

the subgraph ( )G,H . Moreover, assume that each node is characterized by some scalar 

variable (e.g., its yield) and that a number of observations of the node characteristics have 

been made, each observation comprising measurements of all characteristics made at some 

time. 

Given this information, it is required to identify a subsystem of nodes such that the 

characteristic of each of its outputs can be predicted, in liner regression sense, from the 

characteristics of the influencing nodes in the subsystem and the corresponding predictor is 

the best (in some sense) compared to all other subsystems. 

This problem can be formulated as follows. Assume that for any WH ⊆  and any 

Hx ∈ , 

    
otherwise,      

   if    



 ∅≠

=
0

xx H),H,x(
)H,x(

ρ
πρ  

where xH  is the set of elements influencing x , )H,x( xρ  is the set correlation coefficient 

between x  and xH . 

We easily see that ρπ,W  is a monotone system. We define is ϕ -generated 

characteristic function 

  
)H(x

)H(F
ϕρ ∈

= min )H,x(ρπ . 

The econometric problem formulated above can be formalized as the problem of finding 

the subset *H  that maximizes the function )H(Fρ . 

Since )H(ϕ  satisfies property (7) (see above), Proposition 4 indicates that this problem 

is solved by the F -algorithm. 
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APPENDIX 

Proof of Theorem 1. 

Let ( )B,W  be a set system ϕ -generated by the hereditary operator ϕ . We will show 

that the complementary system ( )B,W  is an antimatroid. Proposition 2 implies that ( )B,W  

is an accessible system. Therefore, it remains to show that ( )B,W  is closed under union or, 

equivalently, that ( )B,W  is closed under intersection, i.e., is a lower subsemilattice of the 

Boolean. 

Let B∈B,A , ∅≠A , ∅≠B . By GA , there exists a sequence ( )kx,...,x,x 21  of 

distinct elements in W  whose successive removal produces the set A  

{ }( )Ax,...,x,xW k =− 21 . 

Take the first element ix  in ( )kx,...,x,x 21  such that Bxi ∈ . If no such element exists, 

then AB ⊆  and BAB ∩= . Otherwise, { }kx,...,x,xWB 21−⊆ . Using the hereditary 

property of the operator ϕ , we obtain that )B(xi ϕ∈ . 

Let ixBU −= . Take the first element jx  of the sequence ( )kii x,...,x,x 21 ++  such that 

Bx j ∈ . If no such element exists, then AxB i ⊆−  and BAU ∩= . Otherwise, as before 

)xB(x ij −∈ ϕ . 

Repeating this procedure, we successively remove from B  all the elements of the set 

ABA ∩− . In each step we obtain B∈U , i.e., in the last step B∈∩= ABU . 

We will now show that for any antimatroid ( )B,W  the corresponding system ( )B,W  is 

ϕ -generated by some hereditary operator ϕ . Proposition 2 shows that ( )B,W  is a 

ϕ -generated system. We know [4] that antimatroids have the interval property without upper 

bounds: B∈∀ B,A  such that AB ⊆ , AWx −∈∀  we have BB ∈∪⇒∈∪ xAxB . 

By Proposition 2 and Definition 4 of the operator ϕ  for the system ( )B,W , this means that 

ϕ  is a hereditary operator on ( )B,W . ! 
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Proof of Theorem 2. 

Sufficiency. Consider a triple that satisfies (6). Let 
  argiA = )A(i ϕ∈

min )A,i(π ; 

  argiB = )B(i ϕ∈
min )B,i(π ; 

  argi BA =∪ )BA(i ∪∈ ϕ
min )BA,i( ∪π . 

For definiteness let Ai BA ∈∪ . Then by the hereditary property of the operator ϕ  we have 

)A(i BA ϕ∈∪ . By monotonicity (1) of the family )H,i(π  and the definition (2), we obtain 

the chain of inequalities 

  ( ))B(F),A(F)A(F)A,i(
)A,i()BA,i()BA(F BABA

ϕϕϕ

ϕ

π
ππ

 min min ≥=≥

≥≥∪=∪ ∪∪
. 

This completes the proof of sufficiency. 

Necessity. Consider a triple of the subset that satisfies (6). Assume that this triple violates 

the hereditary property, i.e., 

  )BA(Ai ∪∩∈ ϕ , but )A(i ϕ∈ . 

Define a monotone system as follows: 

  2=∪= )BA,i()A,i( ππ , 

  3=∪= )BA,j()A,j( ππ , Aj ∈ , ij ≠ , 

  )BA,j()B,j( ∪== ππ 5 , ABj −∈ . 

On other subsets, we can easily define )H,i(π  without violating monotonicity. 

In this case, we obviously have 

  ( ) 32 =<=∪ )B(F),A(F)BA(F ϕϕϕ  min . 

This contradiction proves necessity. ! 

Proof of Theorem 3. 

Necessity. We will show that “ϕ  is a hereditary operator *H⇒  is a solution of the 

maximization problem of )H(Fϕ  on MB − .” The proof relies on the following lemma. 

LEMMA 1. The set of dead-end vertices M  of the system ( )B,W  ϕ -generated by a 

hereditary operator consists of a single element. This element is the zero of the lower 

semilattice B . 
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Proof of Lemma 1. Assume that B∈1H , B∈2H , 21 HH ≠  and 

∅== )H()H( 21 ϕϕ . By Theorem 1, B∈∩ 21 HH . For definiteness let 121 HHH ≠∩ . 

Consider sequence ( )kx,...,x,x 21  of elements that are removed from the set W  on passing 

from W  to 21 HH ∩ . Let jx  be the first element in this sequence such that 1Hx j ∈ . Then 

{ })x,...,xW(x j 111 −−∈ ϕ  and { }111 −−−⊆ jx,...,xWWH  . By the hereditary property of 

the operator ϕ , this means that )H(x 11 ϕ∈ . But this contradicts ∅=)H( 1ϕ . This proves 

the first assertion of the lemma. The second assertion is proved similarly. 

Let us continue with the proof of necessity. Consider the element WHx =∈ 11 . Since ϕ  

is hereditary and )H(x 11 ϕ∈ , for any 1HH ⊆ : Hx ∈1 . From definition (2) we obtain 

  )H(F)H,x()H,x()H(F 21111 ϕϕ ππ ≥≥= . (A.1) 

Relationship (A.1) implies that ether 1H  maximizes the function )H(Fϕ  on 

( )MB −,W  or 1x  is not an element of the maximizing set, i.e., the solution is the subset 

B∈− 11 xH . A similar argument can be applied to all iH  from the defining sequence. In 

the last step we obtain that ether some iH  is a solution of the problem or the subset 

mm xH −  is the solution. But, ∅=− )xH( mmϕ  and therefore MB −∉− mm xH . 

Moreover, by Lemma 1, mm xH −  is the zero of the lower semilattice B , and therefor 

none of its subsets may belong to the system ( )MB −,W . Thus, the sought solution is 

contained in the defining sequence, which proves necessity. 

Sufficiency. The proof is by contradiction. Let YX ⊂ , B∈Y,X , )Y(Xx ϕ∩∈ , 

and )X(x ϕ∉ . Assume that W  and Y  are joined by a chain in ( )B,W : 1HW = , 

YxH,...,xHH kk =−−= 112 . Consider the monotone system 
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 1) 









≠∉−
−=∈

=

=
;xy,Xy,k

k,i,Xy,k

,xy,i

)H,y(

i

i

i

     if   
      if        

   if         

1
11π , 

 2) 






∉−
≠∈

=
=

;Xy,k
,xy,Xy,k

,xy,
)H,y( k

   if   
     if        

   if        

1

1
π  

 3) ;xHZy,)Z,y( k −⊆∈=    if    0π  

 4) 


 ≠

=
;

,xy,k
)X,y(

otherwize      
   if     

0
π  

 5) k,i,,HZ),H,y()Z,y( ii 11 =⊄⊆= +−   HZ     if     1iππ ; 

 6) ;XZ,)Z,y( ⊂=    if   0π  

 7) .YZX),H,y()Z,y( k ⊂⊂=    if   ππ  

In this case we clearly have k)X(F = , where for any H  from the defining sequence 

( ),...H,...,H,H k21  we have k)H(F < . This means that F -algorithm does not find the 

global maximum of the function (5). 

Proof of the Theorem 4. 

1) follows from quasiconcavity of the function )H(Fϕ  (see Theorem 2). 

2) Let "H  and Ĥ  be maximum-cardinality solutions of maximization problem for the 

function (5) and ĤH ≠" . Let kH  be the minimum set from the defining sequence such that 

( ) kHĤH ⊆∪"  and let kx  be the element corresponding to kH . Clearly, ĤHxk ∪∈ " . 

Since ϕ  is hereditary operator, it follows that )ĤH(xk ∪∈ "ϕ  and ether )H(xk
"ϕ∈  or 

)Ĥ(xk ϕ∈ . Let )H(xk
"ϕ∈ . Then by monotonicity of the system ( )π,W  and the 

definition of the function )H(Fϕ  it follows that 

  )H(F)H,x()H,x()H(F kkkk
""

ϕϕ ππ ≥≥= . 

This means that kH  is a solution of the maximization problem for (5). But 

ĤHH k => " , a contradiction. Parts 3) and 4) easily follow from 2). 
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Proof of the Theorem 5. 

We will show that if ( )** H,J  is a saddle point of the function )H,J(Π , then 

  )H(F)H(F *
ϕϕ ≥ , MB −∈H . (A.2) 

The image )H(ϕ  of any set MB −∈H  is nonempty and any sequence Ω∈J  

consists of all elements of the set 0HW − . Therefore it is easy to see that for any pair 

Ω∈J , MB −∈H  there exists )H(x ϕ∈  such that H,Jxx = , and conversely by 

construction of a ϕ -generated system, for any )H(x ϕ∈  there is Ω∈J  such that 

H,Jxx = . Therefore 
  

Ω∈J
min

)H(x
)H,J(

ϕ
Π

∈
= min )H,x(π . 

Then we have 

MB−∈
=

H

** )H,J( maxΠ
Ω∈J

min
MB−∈

=
H

)H,J( maxΠ
)H(x ϕ∈

min
MB−∈

=
H

)H,x( maxπ )H(Fϕ . 

On the other hand, 

  
Ω

Π
∈

=
J

** )H,J( min
)H(x

*
*

)H,J(
ϕ

Π
∈

= min )H(F)H,x( **
ϕπ = , 

which proves (A.2). 

We will now show that if *H  is a solution of the maximization problem for the function 

(5), then there exists *J  that satisfies (8). 

The proof relies on the following lemma. 
Let ( ) Ω∈= my,...,y,yJ 21 , { }{ }m,k,Hy,...,y,yHH mkkJ 1021 =∪== ++H . 

LEMMA 2. 
  

JH H∈
max

0HH
)H,J(

−∈
=

B
maxπ )H,J(Π . 

Proof of Lemma 2. Let MB −∈H , JH H∈ . Then there exists J'H H∈ , such that 

'HH ⊂  for any J"H H∈  such that 'H"H ⊂  we have "HH ⊄ . 

It is easy to see that by the hereditary property of the operator ϕ  and the fact that 

Ω∈J , we have H,J'H,J xx = . By monotonicity of the system ϕπ F,,W  this means that 

)H,x()'H,x( H,J'H,J ππ ≥ , i.e., )H,J()'H,J( * ΠΠ ≥ , which proves Lemma 2. 

We now proceed to prove (8). From the definition of the functions )H,J(Π  and 

)H(Fϕ  we have 

  )H(F)H,J( **
ϕΠ ≥ . (A.3) 
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On the other hand, by Lemma 2 and Theorem 3, we have *J
H  

  
*J

H

* )H(F
H∈

= maxϕ )H,J()H,J( *** ΠΠ ≥ . (A.4) 

Combining (A.3) and (A.4), we obtain 

  
*J

H H∈
max

ΩϕΠΠ
∈

===
J

**** )H(F)H,J()H,J( min *H,J(Π ). 

Again applying Lemma 2, we obtain inequality (8). 
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