
LOCAL TRANSFORMATIONS IN MONOTONIC SYSTEMS 

II. Algorithms for Local Transformations of Monotonic Systems * 

E. N. Kuznetsov, I. B. Muchnik, and L. V. Shavartser UDC 62-506.1 
Procedures are examined for establishing local changes to initial data that are necessary and 
sufficient to provide the required correction of the result of structuring: inclusion or exclusion 
of a specified element from the kernel of the monotonic system from the first part of this arti-
cle. 
 

1. Introduction 

The problem of seeking small changes to initial data that result in a specified (desired) 

correction of the results of structuring was formulated in [1]. This problem is then posed and 

resolved in the framework of the theory of so-called monotonic systems, 1 in which the result 

of structuring the initial data is the kernel, or internal “central core” of the system under con-

sideration, which is a type of subsystem that, in the sense of an exact solution of some extre-

mal problem (solution algorithms for which are found in [2] and [3]), best reflects the “inter-

relations and interactions” of elements in the entire system. Necessary and sufficient condi-

tions for the expansion (contraction) of the kernel of a system to an accuracy of one specified 

element !  were obtained in [1] for the class of p -monotonic systems presented there. At the 

same time the class of allowable changes to initial data was formulated in terms of local 

transformations of monotonic systems. 

Previously, this problem (correcting the kernel of a monotonic system) was examined in 
[4] for two actual monotonic systems 1π,W  and 2π,W , where W  is the set of objects, 

NW = , each element i  of which is related to a subset iy  of the set indicators Y , while the 

functions )H,i(1π  and )H,i(2π  were defined as follows: 

 H
i Yy)H,i( \ =1π , (1) 

 iH yY)H,i( \ =1π , (2) 

 k
Hk

H yY
∈

= " ; k
Hk

H yY
∈

= # . (3) 
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1  Necessary definitions are provided in the appendix (see also [1-4]). 
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Sufficient conditions were obtained in [4] showing that expansion (contradiction) by only 

one subset !y  permitted inclusion of one – specifically the ! -th – element into kernel 1G  of 

the first monotonic system or its exclusion from the kernel 2G  of the second system (or vice 

versa, respectively). At the same time the possibility of establishing the sought-after local 

transformation using these sufficient conditions is only mentioned in [4], while at the same 

time its practical implementation requires development of a special procedure. 

Thus, the result of [4] was significantly broadened in [1] in two respects (instead of suffi-

cient conditions for correction of the kernel for each of two actual monotonic systems, neces-

sary and sufficient conditions are obtained for broad class of monotonic systems). However, 

development of a procedure for establishing the sought-after small change to initial data can 

not, in distinction from the actual theorems regarding necessary and sufficient conditions for 

kernel correction, be achieved in general terms for local transformations of monotonic sys-

tems that ignore the actual form of data representation. Thus, in the present work, which is 

actually a continuation not only of [1], but of [4] as well, construction of such a procedure is 
presented using the actual monotonic system 1π,W  as an example. 

2. Local Transformations of Monotonic Systems on Boolean Data Matrices 

Let ji ϕΦ =  be a right-angled Boolean MN ×  matrix, each line of which corresponds 

to some objects i , which is an element of set W , NW = , and each column, to element j  of 

the set of indicators Y , MY = . In other words, matrix Φ  defines a family W  of subsets Y : 

{ }Ny,...,yW 1= , Yyi ⊆ , where 

 


 ∈

=
otherwise,   

, if   ,
 0

1 i
ji

yj
ϕ  (4) 

or conversely, 

 { }1=∈= jii Yjy   ,ϕ , N,i 1= . (5) 

It is easy to see that functions 1π  and 2π , which are definable in (1)-(3) over the matrix Φ , 

exhibit monotonicity (see [A.1]). 
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Below we examine the problem of correcting the kernel 1G  of the monotonic system 

1π,W  (the subscript 1 may thus be dropped, writing π,W , π , G , etc.). The problem of 

correcting kernel 2G  for monotonic system 2π,W  is solved analogously. 

Theorem 1. The monotonic system π,W , defined using (1) and (3), has separable vari-

ables (see [A.6]) and monotonic increments (see [A.7]). 

To prove this theorem, it is sufficient to express the function in the form 

 H
i

H
i YyYy)H,i( −== \π  (6) 

and utilize the properties of set intersection. 

Thus, Theorem 1 allows us to use the results of Theorem 5 and 6 from [1] regarding the 

expansion and contraction of the kernel of a p -monotonic system with monotonic incre-

ments in order to determine the necessary and sufficient conditions for correction of the ker-

nel of a monotonic system. 

We first define the concept of a local transformation of this monotonic system. 

Theorem 2. Expansion of set !y , i.e., the replacement of some zeros with ones in the 

! -th row !Φ  of matrix Φ , while leaving all other rows of the matrix unchanged is called a 

positive local transformation, while contraction of the set !y , i.e., the replacement of some 

ones by zeros in ! -th row !Φ  of matrix Φ  is called a negative local transformation of the 

monotonic system π,W . 

The proof follows directly from the definition of positive and negative local transforma-

tions of a monotonic system with separable variables (see the appendix) and from the defini-
tion of system π,W  (see [1], [3]). 

Thus, a local transformation of a monotonic system π,W  consists in the transition from 

initial data matrix Φ  to a matrix 2 'Φ , such that ii y'y = , N,i 1= , !≠i  and !! y'y ⊃  or 

!! y'y ⊂ . 

                                                           
2  The prime denotes values, functions, and sets related to the transformed monotonic system 
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We denote by !∆  the set, and by !n , the number of added or removed elements in set !y : 

 




⊂
⊃

=
 , if  
, if    ,

ll

l

y'y'yy
y'y'y

!!

!!

!

!

\
\

∆  (7) 

 !! ∆=n . (8) 

The number !n  may be considered a parameter of a local transformation of a monotonic 

system that characterizes its “value,” “power,” etc.; as !n  increases, the transformation be-

comes – in the framework of this approach – “less local.” 

Let us restate the conditions for correction of a kernel of a monotonic system relative to 

this characterizing number. 

Theorem 3. For the kernel of the monotonic system π,W  on the transformed matrix 

'Φ , in order to obtain the set !∪= G'G  via positive local transformation of the system 

π,W  i.e., by expanding the number of ones in only ! -th row of this matrix, 

 ( !! y'y ⊃ , !! y'y l\=∆ , ly'yn \!!! == ∆ ; ii y'y = , N,i 1= , )!≠i , 

where GW \∈! , it is necessary and sufficient that one of the following tree groups of condi-

tions be satisfied: 

 !! yynyy giim
−<<−

−1
, (9) 

 !!! ∆∩+−−≥ GG
gl YyYyyn \ , (10) 

!!!! !! ∆π∆π ∩+∪−∩−+> GHH
kk Y)G,(YyY)H,i(n kk \ , 11 −= − m),(ik pΓ ; (11) 

 !! yyn g −= ; (12) 

 !! yyn g −> , (13) 

 ( ) ( ) !! yYY)G,g()H,i(YY GH
kk

GH kk \\\ +−≥∩ ππ∆ , µ,mk = , (14) 

where 

 µ : 
11 +−

≤+<
µµ ii ynyy !! . (15) 
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Theorem 4. For the kernel of the monotonic system ',W π  on the transformed matrix 

'Φ  in order to obtain the set !∪= G'G  via a negative local transformation of the system 

π,W , i.e., by contracting the number of ones in only the ! -th row of this matrix 

 ( !! y'y ⊂ , !! 'yyl \=∆ , l'yyn \!!! == ∆ ; ii y'y = , N,i 1= , )!≠i , 

where G∈! , it is necessary and sufficient that the following conditions be satisfied: 

 !! !! ∆π ∩+−> GY)G(F)G,(n \ , (16) 

 )\!G(F)H,i( kk ≤π , N,k 1+= λ , (17) 

 )G(FYy k

k

H !!
! \\ <− , 1−= m,k µ , (18) 

 )G(FY)H,i( kH
kk !!

! \\ <∩+ ∆π , 11 −= µ,k , (19) 

where 
 !

!
! \

\
\ G

iGi
Yy)G(F −=

∈
 min , (20) 

 µ : 
11 +−

≤−<
µµ ii ynyy !! . (21) 

Algorithms are presented below for construction of corresponding local transformations, 

one of which is based on using Theorem 3; the other, on Theorem 4. At the same time, two 

different problems are, generally speaking, actually solved each time: 

1) finding the arbitrary local transformation that satisfies the necessary and sufficient 

conditions for a specified kernel correction; 

2) finding the minimum value of !n  among such transformations. 

It turns out that for the case of kernel expansion ( )!∪= G'G  these are two problems are 

solved differently and with different complexity. In case of contraction ( )!\G'G =  the task 

of searching for an arbitrary local transformation and searching for the minimum local trans-

formation that satisfies the necessary and sufficient conditions are of equal complexity, since 

they are performed using the same algorithm. 3 

                                                           
3  After a small altering using the same algorithm, we may formally find also the local transformations that have 

a maximum value !n  among the satisfying conditions for kernel correction, although such a problem seems 

artificial to us. On the other hand, the search for a local transformation with a maximum number !n  while 

preserving the kernel G'G =  is of general interest, although it falls outside the framework of this work. 
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3. Algorithms for Expanding and Contracting the Kernel of a Monotonic System 

We examine a procedure for searching for a local transformation that satisfies the neces-

sary and sufficient conditions for including a specified element !  in kernel G . 

It is easy to see that such a transformation always exists, since there can always be found 

a number !n  that satisfies the second group of conditions from Theorem 3. At the same time, 

no constraints are placed on the members of set !!! y'y \=∆  of ones added to the ! -th row of 

matrix Φ . Thus, in this case the procedure for constructing a local transformation that is nec-

essary and sufficient for inclusion of element !  in the kernel reduces to the selection of !n , 

!! yyn g −=  arbitrary elements of set !yY \  and adding them to set !y . 

At the same time, practice often requires finding a transformation that must change the 

minimum number !n  of elements in matrix Φ , or at least, to establish whether the found lo-

cal transformation is minimal in !n . 

Corollary to Theorem 3. If 1
1

=−
−mm ii yy  then the number !n  that satisfied (12) is mini-

mum. If 1
1

>−
−mm ii yy  then the minimum allowable number !n  satisfies either group I or 

group II of conditions of Theorem 3. 

It is easy to see that in second case, the value of !n  obtained from (12) may be larger than 

minimum. 

Since the basis of the algorithms for searching for minimum transformations for expan-

sion or contraction of the kernel coincide to a great degree, then while we are aware of an 

analogously simple algorithm for finding an arbitrary local transformation for contraction of 

the kernel, we examine the problem of contracting the kernel of a monotonic system. 

We preface the immediate description of the algorithm with a number of corollaries to 

Theorem 4, which form the basis of its construction. References to conditions (16)-(19) eve-

rywhere denote the conditions of Theorem 4. 

LEMMA 1. Satisfaction of conditions (17) and (18) are independent of the members of 
the set !!! 'yy \=∆ , and (17) is also independent of the number !! ∆=n . 
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It follows that the first step of the algorithm for constructing the sought-after transforma-

tion of a monotonic system must be to verify that (17) is satisfied. For this, we first use 

Eq. (20) to calculate the value )G(F !\ . (Recall that the values of the function )H,i( kkπ , 

N,k 1=  are known only after the kernel G  is isolated in the initial monotonic system 

π,W . 

Then, as soon as !n  is fixed, Eq. (21) is used to determine the associated new position of 

the element !  in the defining sequence 'I , i.e., the number µ , and condition (18) is verified. 

LEMMA 2. In the conditions of Theorem 4, the number !n  is constrained by the inequal-

ity 

 !!! ynyy g ≤<− . (22) 

Lemma 2 denotes that if (17) is satisfied, then the remaining part of the algorithm to 

search for transformation must represent a sequential verification of conditions (16), (18), 

and (19) for different values of !n , for example, the initial and smallest. In other words, the 

subsequent steps of the algorithm for construction of the sought-after transformation must, 

after verifying (17), be completed in an iterative procedure, in the beginning of which the 
defined value !n  is set, for example, to one more that before (in this case, gyyn −= !!  be-

fore the first iteration, and for the last, !! yn = ). However, if we must find at least one local 

transformation that satisfies the necessary and sufficient conditions, then this cyclic proce-

dure may terminate earlier, i.e., when conditions (16)-19) are satisfied for some !n . At the 

same time, as is easy to see, if the loop formally terminates, then it follows that (16)-(19) are 

not satisfied for any value of !n  and the sought-after transformation does not exist. 

LEMMA 3. If condition (18) is not satisfied for some *nn !! = , then it is not satisfied for 

any *nn !! > , as well. 

Lemma 3 allows the search for local transformation to end for large values !n  if it has 

been determined that the sought-after transformation does not exist in connection with non-

satisfaction of (18). 
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LEMMA 4. If for some fixed !n  condition (16) is satisfied for some set !∆ , !! n=∆ , 

then it is also valid for any other set !! y* ⊆∆ , !! n=∆  such that 

 !! ∆∆ ∩=∩ G*G YY . 

Lemma 4 allows us to simplify significantly the algorithm for constructing the sought-

after local transformation of a monotonic system, since the required search of all subsets !y  

with the number of elements equal to !n  are, in accordance with Lemma 4, replaced by a 

search of all allowable values !∆∩GY  entering into (16). In turn, each of its values corre-

sponds to some family of subsets of set !y . 

LEMMA 5. The range of values of !∆∩GY  that satisfy condition (16) is established by 

the following inequality: 

 !!!
!!

∆∆∆
∆∆

∩≤∩≤∩ GGG YYY  max min , (23) 

where 

 






−

≥
=∩

otherwise,   

, if                     ,
 min

G

G

G

Yyn

nYy
Y

\
\

!!

!!

!
!

0
∆

∆
 (24) 

 1−−+=∩ )G,()G(FnY G !!!!
!

π∆
∆

\ max . (25) 

Thus, condition (16) satisfies any set !∆  ( )!!!! ny =⊆ ∆∆  ,  having value !∆∩GY  in the 

limits of the specified range. 

COROLLARY. If !! nYy G ≥\  and GYy \!! ⊆∆  or !! nYy G <\  and GYy \!! ⊃∆  the 

(16) is satisfied. 

Thus, in accordance with Lemma 5 in order to assure satisfaction of (16), it is sufficient 
to include in set !∆  as many elements of set GYy \!  as possible, since if !! nYy G <\  then it 

is then sufficient to include the entire set GYy \! . 

LEMMA 6. a) If !! nYy G ≥\  and for some set *
!∆ , ∅=∩ *GY !∆  condition (19) is satis-

fied, then it is also satisfied for the set !∆ , !!!!! nYy *G ==⊆ ∆∆∆  ,\ . b) If !! nYy G <\  

and for set *
!∆ , ( ) ∅=*GYy !! ∆\\  condition (19) is satisfied, then it is also satisfied for the set 

!∆ , GYy \!! ⊃∆ , !!! n* == ∆∆ . 
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Thus, Lemmas 5 and 6 leave only the minimum value 4 from the range of values of quan-
tities !∆∩GY  when constructing the sought-after set !∆ . 

We denote the quantity !∆∩GY  by )m(n! . 5 

It is easy to see that if !! nYy G ≥\ , then, in accordance with Lemmas 5 and 6, when 

searching for a local transformation to satisfy (16) and (19) we must take 0=)m(n! , i.e., 
G

i Yy \⊆!∆ . If !! nYy G <\  then GYyn)m(n \!!! −= , i.e., GYy \!! ⊃∆ . In this way, (16) 

is guaranteed to be satisfied, and if (19) is not satisfied for such a value of quantity )m(n! , 

then it is not satisfied for any other of its values. 

LEMMA 7. If the inequality 

 )G(F)H,i( kk !\<π  (26) 

is not satisfied for at least one k , 11 −= µ,k , then for given value !n , the sought after local 

transformation does not exists. 

Lemma 7 gives us a basis for terminating the search for set !∆  that satisfied conditions 

(16)-(19) for given !n , and go over to the next possible value of !n . 

Now let inequality (26) be valid for all 11 −= µ,k . We denote by )k(!∆  the set, and by 

)k()k(n !! ∆=  the number of elements of the set kHY , µ,k 1= , that are included in the set 

!∆  (i.e., !! ∆∆ ∩= kHY)k( ), and for each 11 −= µ,k  we calculate the following quantity 

)H,i()G(F)k(n kkπ−= !! \ . 

LEMMA 8. If condition (19) is valid for some set !∆ , !! n=∆ , then (19) is valid for any 

other set *
!∆ , !! n* =∆ , such that 

 )k(n)k(n*
!! =  11 −=∀ µ,k . 

It is easy to see the analogy between the assertion of Lemma 4 relative to (16) and the as-

sertion of Lemma 8 relative to (19). 
                                                           
4  If we must find all possible transformation that satisfy the necessary and sufficient conditions for excluding 

element !  from kernel G , then it is evident that in this case, we must examine all values of the quantity 

!∆∩GY  in range (18). 
5  The sense of such notation will be explained below. 
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Thus, just as Lemma 4 allowed us to go from a search of all subsets of set !y  having a 

specified !n  number of elements when constructing a set !∆  to satisfy (16), to a search of all 

possible values of !! ∆∩= GY)m(n . Lemma 8 allows us, instead of an analogous search 

when constructing a set !∆  that satisfies (19), to examine only all possible sets of values 

!! ∆∩= kHY)k(n , 11 −= µ,k . This, however, still cumbersome task is simplified signifi-

cantly in light of the constraints imposed on these values. 

LEMMA 9. The following relations are valid: 

 )m(n)k(n !! ≤  11 −=∀ µ,k , 

 )t(n)s(n !! ≤  ts ≤∀  , 11 −= µ,t,s . (27) 

It thus, follows that, having defined set !∆  by setting !! ∆∩= kHY)k(n  and indexing k  

from µ  to 1, we obtain for each following value )k(n!  a more narrow range of possible 

values than before; in particular, if 0=)m(n! , then 0=)k(n! , 11 −= µ,k . 

LEMMA 10. If for set !∆  we have 

 )k(n)k(n !! < , 11 −= µ,k , (28) 

where !! ∆∩= kHY)k(n  and 0>−= )H,i()G(F)k(n kkπ!! \ , then for this set !∆ , condi-

tion (19) is satisfied. 

COROLLARY. If condition (26) is valid for all 11 −= µ,k  and in addition, 0=)k(n! , 

11 −= µ,k , then for this !∆ , condition (19) is satisfied. 

LEMMA 11. a) If )m(nYY HG
!≥−1µ\  and for some set *

!∆ , ∅≠∩ −1µ∆ H* Y!  

condition (19) is satisfied, then it is also satisfied for set !∆ , 1−⊆ µ∆ HG YY)m( \! , 

)m(nYY)m( G*G
!!!! =∩=∩= ∆∆∆ , !!! n* == ∆∆ . b) If )m(nYY HG

!<−1µ\  and for 

some set !∆ , ( ) ∅≠− *HG YY !∆µ \\ 1  condition (19) is satisfied, then it is also satisfied for set 

!∆ , 1−⊃ µ∆ HG YY \! , )m(nYY)m( G*G
!!!! =∩=∩= ∆∆∆ , !!! n* == ∆∆ . 

In order to preserve uniqueness of expressions that comprise analogous assertions for 

11 −= µ,k  and for 1=k , we set ∅=0HY . 
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LEMMA 12. a) If )k(nYY kk HH
!≥−1\  for some k , 11 −= µ,k  and for some set *

!∆ , 

∅≠∩ −1kH* Y!∆ , for this k  the inequality in (19) is satisfied, then it is also satisfied for the set 

!∆ , 1−⊆ kk HH YY)k( \!∆ , )k(nYY)k( kk H*H
!!!! =∩=∩= ∆∆∆ , !!! n* == ∆∆ . b) If 

)k(nYY kk HH
!<−1\  for some k , 11 −= µ,k  and for some set *

!∆ , ( ) ∅≠− *HH kk YY !∆\\ 1 , for 

this k  the inequality (19) is satisfied, then it is also satisfied for the set !∆ , 
1−⊃⊃ kk HH YY)k( \!! ∆∆ , )k(nYY)k( kk H*H

!!!! =∩=∩= ∆∆∆ , !!! n* == ∆∆ . 

It is easy to note the analogy between the assertions of Lemma 6 relative to the advanta-

geous inclusion of elements from set GYy \!  into the set !∆  in order to satisfy (19), and 

those of Lemmas 11 and 12. 

Lemmas 5 (corollaries), 6, 10, 11 and 12 permit the organization of a sequential uninter-

rupted construction of a set !∆  that satisfies (19). 

First, in the case where !! nYy G <\  all elements of set !∆  must be included in the set 

GYy \!  in accordance with Lemmas 5 and 6. In the opposite case, we may select any set 
GYy \!! ⊆∆ , and if condition (26) is thereby satisfied for 11 −= µ,k , then construction of 

sought-after local transformation is stopped. The given value of !n  and the resulting set !∆ , 

!! y⊆∆ , !! n=∆  satisfy the necessary and sufficient conditions foe excluding element !  

from kernel G . Further, if GHG Yyn)m(nYY \\ !!! −=≥−1µ  then set !∆  includes )m(n!  

arbitrary elements of set 1−µHG YY \ , which form the set )m(!∆ . Then, if conditions (26), 

11 −= µ,k  are satisfied at the same time, then construction of set !∆  is also stopped; specifi-

cally, a set ( ) )m(Yy G
!!! ∆∆ ∪= \  is selected. If GHG Yyn)m(nYY \\ !!! −=<−1µ  then set 

1−µHG YY \  is included in !∆  entirely: !! ∆∆µ ⊂⊂− )m(YY HG 1\ . Then the number of elements 

remaining to be included in !∆  is 11 −−=− µµ HG YY)m(n)(n \!! . If )(n)(n 11 −≤− µµ !! , 

which assures satisfaction of the corresponding inequality (19), then we examine the follow-
ing set 21 −− µµ HH YY \ . If )(nYY HH 121 −≥−− µµµ

!\ , then in !∆  we include )(n 1−µ!  arbitrary 

elements of this set, and conclude the construction of the sought-after transformation. 

If )(nYY HH 121 −<−− µµµ
!\  then set 21 −− µµ HH YY \  is included entirely in !∆ , etc. 

)(n 1−µ!
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This last comment before presenting the description of the algorithm is related to the arbi-

trary nature of the selection of subsets of some set with a given number of elements. To have 

unique definiteness in the steps of the algorithm, we must have arbitrary, yet fixed way of 

executing these operations. We shall agree, for example, that in such situations for inclusion 

into !∆  we shall select the required number of elements from the specified set having the 

smallest number in its initial list of elements. 

Algorithm for constructing local transformation for 

exclusion of element !  from Kernel G . 

The initial data for operation of the algorithm are a Boolean MN ×  matrix Φ , a kernel 

G , WG ⊆ , a monotonic system π,W , and element ! , G∈! , which must be excluded 

from the kernel by replacing ones by zeros only in ! -th row of Φ . The sets kH  and kHY , 

N,k 1= , are also assumed known, as are quantities )H,i( kkπ , N,k 1= , defined in the proc-

ess of isolating kernel G . 

The algorithm is described in steps. 

1. The quantity )G(F !\  is calculated (from [20]). 

2. Condition (17) is verified. If it is not satisfied, go to step 22. 

3. An allowable value is assigned to !n . This is done using a loop in 

!!! y,yyn g 1+−= ; in each iteration, 1+= !! nn : . The last step of the algorithm in-
cluded in this loop is 21. 

4. The number µ  is calculated (from [21]). 

5. Condition (18) is verified. If it is not satisfied, go to step 22. 

6. Condition (26) is verified for 11 −= µ,k . If it is not satisfied foe even one k , 
11 −= µ,k , go to step 21. 

7. The following inequality is verified: 

 !!! nYy)G,( G ≥= \π . 

 If it is not valid, then go to step 9. 

8. Select a set GYy \!! ⊆∆ , !! n=∆ , here 0=∩= :!! ∆GY)m(n . The result is !n , !∆ . 
Stop. 

9. Calculate the quantity GYyn)m(n \!!! −=: . 
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10. The following inequality is verified: 

 )m(nYY HG
!≥−1µ\ . 

 If it is not valid, then go to step 13. 

11. Select a set 1−⊆ µ∆ HG YY)m( \! , )m(n)m( !! =∆ . 

12. Result is !n , ( ) )m(Yy G
!!! ∆∆ ∪= \: . Stop. 

13. Take ∅=0HY . 

14. Initialize a loop in 11,k −= µ  (decrementing after each step). 

15. Calculate the quantity 

 






−<−+

−=−
=

+

−

.     ,

,          ,

11

1
1

1

µ

µµ

kYY)k(n

kYY)m(n
)k(n

kk HH

HG

\

\

!

!

!  

16. The following inequality is verified: 

 )H,i()G(F)k(n)k(n kkπ−=< !!! \ . 

 If it is not valid, then go to step 21. 

17. The following inequality is verified: 

 )k(nYY kk HH
!≥−1\ . 

 If it is not valid, then go to step 19. 

18. If the loop in 11,k −= µ  is not complete, i.e., 1>k , then the value k  is decremented 
and the algorithm proceeds to step 15 (after completing this loop, go to stem 21). 

19. Select a set 1−⊆ kk HH YY)k( \!∆ , )k(n)k( !! =∆ . 

20. Result is !n , ( ) ( ) )k(YYYy kHGG
!!! ∆∆ ∪∪= \\: . Stop. 

21. (For a given value of !n , the sought-after transformation does not exist.) If the loop in 

!!! y,yyn g 1+−=  is not complete, i.e., !! yn < , then increment 1+= !! nn :  and 
go to step 4. 

22. Result is that the sought-after local transformation does not exist. Stop. 

Theorem 5. If there exists at least one negative local transformation that satisfies the 
necessary and sufficient conditions of the kernel ( )!\G'G =  of a monotonic system, then a 

transformation having a minimum characteristic number !n  among such transformations will 

be the result of applying the algorithm described above. 

Proof of this theorem, based on the sequential use of assertions of Lemmas 1-12, and the 

proof of the lemmas themselves are omitted, since they are only of technical interest. 
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APPENDIX 

A monotonic system π,W  is defined as a finite set W , NW = , with a specified nu-

merical (weighted) function )H,i(π , Hi ∈ , WH ⊆  exhibiting monotonicity, i.e., 

 )H,i()jH,i( ππ ≤\  jHi \∈∀  , Hj ∈∀  , WH ⊆∀  . (A.1) 

The kernel of a monotonic system π,W  is a set WG ⊆  such that 

 )G(F)H(F <  GH ⊃∀  , (A.2) 

 )G(F)H(F ≤  GH ⊆∀  , (A.3) 

where the function F  is defined as follows: 

 )H,i()H(F
Hi

π min
∈

=  WH ⊆∀  . (A.4) 

The algorithm for isolating the kernel of a monotonic system [3] is based on construction 

of a special (nonrepeating) sequence Ni,...,iI 1=  of elements of set W , called defining, via 

the sequential selection of element ki  with minimum weight 

 )H,i()H,i( kHikk
k

ππ  min
∈

=  (A.5) 

among the sets kH  of elements remaining at the k -th step, and its inclusion in the k -th posi-

tion of a sequence, after which the weight of the other elements are recalculated for the new 
set of remaining elements kkk iHH \=+1 . The sets N,k,H k 1=  thus form the sequence 

NH,...,HH 1= , that is “parallel” to the defining sequence. The kernel G  is then isolated by 

verifying conditions (A.2) and (A.3) not only among the sets of sequence H . The number of 

the kernel in the sequence H  is denoted by m : mHG = . It is the number of the first element 

of kernel G  in sequence I : mig = . 

Among the sets N,k,H k 1=  there is a subsequence of sets p,j,j 1== ΓΓ  where 

Np ≤  for which 

 )(F)H(F jΓ<  jH Γ⊃∀  , 

 )(F)H(F jΓ≤  1+⊃⊃∀ jj H,H ΓΓ . 

The latter set pΓ  in sequence Γ  of quasikernels is the kernel pG Γ= . We denoted by 

)(i p 1−Γ  the number of the first element of set 1−pΓ  in sequence I . 
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The monotonic system π,W  is called a system with separable variables of 

 )H(r)i(p)H,i( +=π . (A.6) 

The monotonic system π,W  has monotonic increments if 

)E,i()E,i()H,i()H,i( !! \\ ππππ −≤−  E,i ∈∀ ! , !≠i , HE ⊆∀  , WH ⊆∀  . (A.7) 

Local transformations of a monotonic system with separable variables is defined by the 

relations 

 
,   ,    

,      ,      
HWH)H(r)H('r

iWi)i(p)i('p
∉⊂∀=

≠∈∀=
!

!
 (A.8) 

and it is positive if 

 
,  ,    

,
HWH)H(r)H('r

)(p)('p
∈⊆∀≤

>
!

!!
 (A.9) 

and negative if 

 
.  ,    

,
HWH)H(r)H('r

)(p)('p
∈⊆∀≥

<
!

!!
 (A.10) 

We denote by λ  and µ  the number of element !  relative to sequence I  before trans-

formation ( )!=λi  and to sequence 'I  after transformation ( )!=µj . It is shown that when 

(A.8) and (A.9), λµ ≥ , and the mutual position of remaining elements in the defining se-

quences of monotonic systems with separable variables do not change. 

LITERATURE CITED 

1. E. N. Kuznetsov, I. B. Muchnik, and L. V. Shvartsev, “Local transformations 
of monotonic systems, I.,” Avtomat. Telenekh., No. 12, 85-95 (1985), 
http://www.datalaundering.com/download/ltransfo01.pdf . 

2. I. E. Mullat, “Extremal subsystems of monotonic systems, I,II.,” Avtemat. Telemekh. 
No. 5, 130-139, http://www.datalaundering.com/download/extrem01.pdf ; No. 8, 169-178, 
(1976), http://www.datalaundering.com/download/extrem02.pdf . 

3. E. N. Kuznetsov, “Analyszing the structure of the coupling matrix with the aid of the 
associated monotonic system,” Avtomat. Telemekh., No. 7, 128-136 (1980), 
http://www.datalaundering.com/download/couplem.pdf. 

4. E. N. Kuznetsov and I. B. Muchnik, “Analysis of the distribution of functions in an 
organizational system,” Avtomat. Telemekh., No. 10, 119-127 (1982), 
http://www.datalaundering.com/download/organiza.pdf . 

http://www.datalaundering.com/download/ltransfo01.pdf
http://www.datalaundering.com/download/extrem01.pdf
http://www.datalaundering.com/download/extrem02.pdf
http://www.datalaundering.com/download/couplem.pdf
http://www.datalaundering.com/download/organiza.pdf

	Introduction
	Local Transformations
	Theorem 1
	Theorem 2
	Theorem 3
	Theorem 4

	Algorithms
	Described in steps

	Theorem 5
	APPENDIX
	LITERATURE CITED

