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We examine a linguistic method of the analysis of 0-1 matrices in which a matrix is approxi-
mated by a small number of submatrices. An efficient algorithm using the apparatus of mono-
tone system is proposed for optimizing the partition.** 

1. Introduction 

Currently available linguistic methods for data matrix analysis are designed for the proc-

essing of numerical “object-attribute” matrices [1,2]. In practice, especially in social sci-

ences, economics, and medical research, empirical information is often collected as qualita-

tive data. Such information is always easily and as shown in [3], expediently presented in the 

form of 0-1 matrices. Typical examples of 0-1 matrices are provided by studies of organiza-

tional structure and operation [3]. In this article, we perform linguistic analysis of “object-

attribute” matrices with 0-1 elements. 

The proposed method partitions the “object-attribute” matrix into vertical “contrasts” 

bands, and the intuitive notion of contrast is formalized with the aid of monotone systems as 

in [3]. As a result, the attributes are partitioned into a given number of groups, and in each 

group the objects are separated into two classes, which consist “almost of 1-s” and “almost 

of 0 -s” respectively. For 0-1 matrices, this special partition of objects is of considerable in-

terest, because the outcome has an appealingly simple interpretation. In the analysis of nu-

merical data, on the other hand, many classes are usually needed in order to classify the ob-

jects within the attribute groups [1]. 

The algorithms are computationally efficient because the particular family of monotone 

functions used allows the functionals being extremized (the functional increments) to be effi-

ciently updated following a local change in the vertical bands(removal or insertion of one 

column). 
                                                           
*  Moscow, Tbilisi. Translated from Avtomatica i Telemekhanika, No. 4, pp. 132 – 139, April, 1986. Original 

article submitted November 13, 1984. 
  005 – 1179/86/4704 – 0553 $12.50   1986 Plenum Publishing Corporation. 553 
  We alert the readers’ obligation with respect to copyrighted material. 
** Only one explicit reference to Monotone Systems [4] in the literature list cited at the end of this article was 

found in Appendix. In [4] the “Monotone System” referred is called “Monotonic System”, noted by JM. 
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2. The problem of partition of a 0-1 matrix into contrast bands 
using monotone systems 

Let W  be the set of objects ( NW = ) and Y  the set of attributes ( MY = ), Φ  is the 

“object-attribute” matrix with 0-1 elements, 

 ji ϕΦ = , 




=
otherwise  0

object   toscorrespond  attribute   when1
 

ij
jiϕ . 

Consider the partition of the set Y  into k  nonintersecting subsets (classes) 

( !
k

q

qYY
1=

= , ∅=∩ 21 qq YY , 21 qq ≠ ). The matrix Φ  is thus partitioned into k  noninter-

secting submatrices ( )k,...,, ΦΦΦΦ 21= , such that the q -th submatrix is a correspondence 

of the set W  and some qY . 

For each q , we define the monotone system qq ,,W Φπα  by 1 

 ( ) q
i

q
H

q yY)H,i( ⋅−−⋅= ααπα 1 , (1) 

where WH ⊆ , Hi ∈ ; q
iy  is the set of attributes corresponding to the object i  in the q -th 

class of attributes; !
Hj

q
j

q
H yY

∈
= ; α  is a numerical parameter, 10 ≤≤ α . The system 

qq ,,W Φπα  is called a particular monotone system. 

The value of q
iy  may be interpreted as the “degree of shading” of the row i  in the band 

qΦ  (we assume that the cell ( )j,i  is “shaded” if 1 =jiϕ ) The value of q
HY  may be inter-

preted as some measure of overall “shading” of the set H  in the band qΦ . 

Then )H,i(q
απ  in some sense characterizes the deviation of individual “shading” from 

the group “shading” in the band qΦ , with certain weights assigned to individual and group 

“shadings”. 

The monotone system qq ,,W Φπα  generates on the set W2  of all subsets of the set W  

the characteristic function 

 )H,i()H(F q

Hi

q
αα π

∈
= min , WH ⊆ . 

                                                           
1 For ½=α , the monotone system qq ,,W Φπα  is the system 2π,W  [3]. 
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The maximum-cardinality set WGq ⊆α , on which the function )H(F q
α  attains its global 

maximum, is called the nucleus of the monotone system qq ,,W Φπα . 

The monotone system (1) partitions the set W  into qGα  and qGW α\ . The next proposition 

shows that the “degree of shading” of the elements in the nucleus is always less than the “de-

gree of shading” of the elements in its complement. 

Theorem 1. Let qGi α∈1 , qGWi α\∈2 . Then for all α  ( 10 ≤≤ α ) we have q
i

q
i yy

21
< . 

The proof is given in the Appendix. 

For small values of α  the set qGα  is lightly “shaded” (most of the q
iy  are small). Con-

versely, the set qGW α\  consists of heavily “shaded” elements. Small values of )H,i(q
απ  on 

qGW α\  guarantee a low scatter of the sets q
iy  in qq

W GY α\ , i.e., homogeneity of the set 
qGW α\  in the band qΦ . As the parameter α  is increased q

HY  becomes larger and the 

“shading” contrast between the sets qGα  and qGW α\  is reduced. 2 

Thus, the “contrast” of the bands qΦ  is naturally measured by )G(F qq
αα . The problem of 

identifying “contrast” bands in the matrix Φ  thus may be stated as follows. It is required to 

find a partition of the attribute set Y  into k  nonintersecting subsets kY,...,Y 1  (re-

spectively a partition of the matrix Φ  into k  bands k,...,ΦΦ1  so as to maximize the func-

tional 

 ∑
=

=
k

q

qJ)R(J
1

1
αα , (2) 

where 
 )G(FJ qqq

ααα = , (3) 

on the set of all partitions { }kY,...,YR 1 =  of Y . 

Other measures of band contrasts may be introduced. Thus, for instance, it is easily seen 

that the measure (1) only accounts for the “degree of shading” of the nucleus qGα  and 

                                                           
2 For large α  ( ½≥α ), the sets qGα  and qGW α\  also have a high contrast, although in a certain different 

sense. In this study, we will only consider “shading” contrast. 



  
4 

ignores the “shading” differences between the sets qGα  and qGW α\ . We can therefore mod-

ify (3) as follows: 

 ( ) )W(F)G(FJ qqqq
αααα −=

mod
. (4) 

The functional being maximized changes accordingly: 

 ( )
mod

1

2 ∑
=

=
k

q

qJ)R(J αα . (5) 

To optimize either functional (2) or (5), we can follow a standard general scheme. 3 

Starting with an arbitrary partition { }kY,...,Y,YR 21 = , we sequentially try to remove 

from each class iY , k,i 1=  the attribute j , iYj ∈  and at the same time try to insert it se-

quentially into each class t  ( k,t 1= , it ≠ ) of the partition R . 

In the process we compute the value of (3), jiJ −
α  on { }jY i \  and jtJ +

α  on { }jY t ∪ . The 

element j  is inserted in the class t  on which the functional (2) has the largest increment. 

This increment is given by the formula 

 .JJJJ)R(J ttiij
ti

jj
ααααα∆ −+−= +−

   (6) 

A compute trial-and-error cycle of placing all the elements in all the classes and then relo-

cating the elements in accordance with the maximum increment of the functional (2) will 

generate the partition 1R  of Y . 

If this partition is different from R , i.e., if at least one )R(Jj
ti α∆    is strictly positive, we 

restart the algorithm with 1RR = . Otherwise, the algorithm ends. Partition R  is the sought 

partition.; the sought vertical bands are correspondingly the submatrices k,...,, ΦΦΦ 21 , par-

titioned into horizontal bands ( ) ( )k1 \\ GW,G,...,GW,G k 1 . 

We see from the proposed algorithm that the main computational operation is the evalua-

tion of )R(Jj
ti α∆   . Efficient computation of this increment requires exploiting the specific 

features of the monotone system used. 

                                                           
3 All the algorithms are described only for (2), since for (5) the algorithms are entirely similar. The evaluation 

of (5) is no more complex than the evaluation of (2), since )W(F q
α  are computes by the procedure used to 

identify the nuclei of the system qq ,,W Φπα . 
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3. Algorithm to identify the nucleus of a particular 
monotone system qq ,,W Φπα  

The algorithm makes use of the following fact. 

Theorem 2. Let the order qP  be defined by the sequence of indexes in the series 

 q
i

q
i

q
i q

N
qq y...yy ≥≥≥
21

. 

Then the nucleus of the particular monotone system qq ,,W Φπα  is one of the sets qH " , 

N,1=" , where { }q
N

qqq i,...,i,iH 1 += """ . 

The proof is given in the Appendix. 

We use the notation: q
N

qqpq i,...,i,iI 21= . 

The algorithm to find the nucleus of the system qq ,,W Φπα  thus involves constructing 

the sequence pqI , computing N  values )H,i( qqq
""απ , and identifying as qGα  the first of the 

sets qH "  on which )H,i()H(F qqqq
""" αα π= , N,1=" , is maximized. 

Updating the Nucleus Inside the Band after a Local Change of the Band. The increment of 

the functional (2) can be determined directly from (6) by a two-fold application of the algo-
rithm that computes the nucleus of qq ,,W Φπα . Yet it is often essentially easier to update 

jqJ −
α  or jqJ +

α  for known pqI , qGα , qJα  than to perform a complete reordering and to com-

pute N  values of )H,i(q
απ . 

The elements Wi,i ∈21  are called qp -equal if q
i

q
i yy

21
= . Clearly, qp -equal elements 

may be placed in an arbitrary order in the sequence pqI . The number of qp -equal elements 

largely determines the complexity of the nucleus-updating algorithm inside some band qΦ . 

Let pqI , qGα , qJα , respectively, be the defining sequence, 4 the nucleus, and the value of 

(3) for the system qq ,,W Φπα . 

Without loss of generality, we may assume that every pair of jqp + -equal ( jqp − -equal) 

elements preserves their order in pqI . 

                                                           
4 Concept of ”defining sequence” was first introduced in 1971, see 

http://www.datalaundering.com/download/modular.pdf, or [4], noticed by JM. 

http://www.datalaundering.com/download/modular.pdf
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Theorem 3. When the band qΦ  is changed precisely by one column j , the order pqI  is 

transformed into order jpqI +  ( jpqI − ), which coincided with the order pqI  on the set of ele-

ments that are not qp -equal. 

This proposition follows in an obvious way from the fact that when the band qΦ  is 
changed by one column, for all Wi ∈  the q

iy  either remains unchanged or change precisely 

by 1 (increasing when a column is inserted and decreasing when a column is removed). 

Theorem 4. The sets qH "  and jqH +
"  ( jqH −

" ) coincide if the element "  of W  has the same 

place in the order pqI  and in the order jpqI +  ( jpqI − ). 

The proposition follows from the fact that the elements of the defining sequence are 

shifted only in one direction: to the left when a column is added and to the right when a col-

umn is removed. 

Theorem 4 leads to simple formulas for updating )H(F jq
"

−
α  ( )H(F jq

"
+

α ) in those cases 

when the element "  retains its position in the defining sequence as a result of a one-column 

change in the band qΦ : 

 ( ) jijiHi

qq )H,i()H,i( jj
  1max ϕαϕαππ αα ⋅−+⋅−=

∈

−−

"
"""" , (7) 

 ( ) jijiHi

qq )H,i()H,i( jj
  1max ϕαϕαππ αα ⋅−−⋅+=

∈

++

"
"""" . (8) 

Formulas for complete re-computation do not involve computation of q
HY
"

 and therefore 

formulas (7) and (8) are essentially simpler than of (1). Since the place of an element in the 
sequence is not preserved only for qp -equal elements, substantial computational savings 

may be achieved if there are only few such elements. 

The step updating the nucleus jqG +
α  ( jqG −

α ), the defining sequence jpqI +  ( jpqI − ), and the 

functionals jqJ +  ( jqJ − ) are thus designed in the following way. Suppose that the previous 
step generated the characteristics pqI , qGα , qJα , q

iy , N,i 1= , )H,i( qqq
""απ , and also iden-

tified the classes of qp -equal elements. It is required to insert 5 the j -th column in the ma-

trix qΦ  and to update all the characteristics. 

                                                           
5 For the removal of the j -th column the algorithm is obviously the same. 
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1) Construct the sequence jqG +
α . Each of the classes Q  of qp -equal elements is parti-

tioned into two subsets 1Q  and the elements of 2Q , where 

 { }1     1 =∈= ji,QiiQ ϕ , { }0     2 =∈= ji,QiiQ ϕ  

The elements of these classes are renumbered so that the sequence jpqI −  starts with the 

elements of 1Q  and the elements of 2Q  follow. 

2) Update )H,i(jq
""

+
απ . Compare the indexes of the elements in the set W  and in the 

sequences pqI  and jpqI + . If they coincide, then use formula (7); otherwise, use for-

mula (1). In conclusion of this step, find the nucleus jqG +
α  and use (3) to compare J . 

Remark 1. Higher computational efficiency may be achieved in computing the increment 

(6). Thus, using criterion (2) with ½=α  (for this value of α , each particular monotone sys-

tem coincides with the monotone system 2π,W  of [3] on the corresponding submatrix), we 

can improve the computational efficiency in the following way. 

Examine iY  and tY . Let im  be the first element of the nucleus i
½G  in the sequence piI , 

tm  the first element of the nucleus t
½G  in the sequence ptI  and iYj ∈ . 

Theorem 5. 0 >)R(J½
j
ti∆  if and only if the following conditions hold: 

1) there exists a set iH " , im≥" , such that 

 )G(F)H(F i
½

i
½

ii
½ ="  and )G(F)H(F i

½
i

½
ii

½
j =−

" ; 

2) there exists a set tH " , tm≥" , such that 

 )G(F)H(F tt
½

tt
½ "" =  and 2

1+=+ )G(F)H(F tt
½

tt
½

j
"" . 

Thus, when computing (6) in this case, we only have to enumerate the subsets “after” (in-

side) the nucleus, which satisfy the conditions 1) and 2). 

Remark 2. Each vertical band may be partitioned into more than two classes with different 

degrees of shading. One such possibility is provided by the nested system of subsets 
( ) ( ) ( ) qq

p
qq G...W αααα ΓΓΓ =⊃⊃⊃= 21 , such that 

 ( ) )H(F(F qq
j

q
ααα Γ > , ( )q

jHW
α

Γ⊃⊇ , p,j 1= . 



  
8 

In this case, we may maximize the criterion (2) or (5), but the vertical bands obtained in 
the process should be partitioned into p  (and not 2) classes ( ) ( ) ( ) ,...q

p
q

p
q

p ααα
ΓΓΓ \, 1−  

( ) ( )qq, αα ΓΓ 21 \  ( p  may differ for different vertical bands). Another independent statement of 

this problem may be obtained using the following construction. Let ( ) ( ) ( )sqqq G;...;G;G ααα
10

 

be the sequence of nuclei of the monotone systems 

( ) ;...,,GW;,,W qqqqq ΦπΦπ ααα
0\ ( ) ( ) ( )( ) qqsqqq ,,G...GGW Φπαααα ∪∪∪

10\ , respec-

tively. Then maximizing a criterion of the form (2), where 

 ( ) )G(FJ
s

n

nqqq ∑
=

=
0

ααα  

( s  is different for different vertical bands) we obtain a partition of the matrix Φ  into vertical 

bands, which are divided into classes with different degrees of shading. Note, however, that 

this statement of the problem, unlike the first one, is associated with considerable computa-

tional difficulties. 

4. Examples of identifying contrast bands on “object-attribute” 
matrices with 0-1 elements 

Example 1. Consider the matrix 

  

 

 

 

Let the set of columns Y  of 1Φ  be partitioned into two nonempty sets in some way, e.g., 

 { }7531 1 ,,,Y = , { }642 2 ,,Y = . 

Applying the proposed algorithm to optimize the functional (2) for 310 ≤≤ α , we obtain 

the column partition 

 { }3211 ,,Y  = , { }76542 ,,,Y  = . (9) 

1 1 1 0 0 0 0 
1 1 1 0 0 0 0 
1 1 1 0 0 0 0 
0 0 0 1 1 1 1 
0 0 0 1 1 1 1 
0 0 0 1 1 1 1 

=1Φ  

0 0 0 1 1 1 1 
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Each of the bands 1Φ , 2Φ  is split into two classes: 

 
{ } { }
{ } { }7654321

3217654
2

1

,,,GW,,G
,,GW,,,G

       , 

    , 

==

==

\
\

2

1
. (10) 

In this range of α , the proposed algorithm in effect diagonalizes the association matrix 

[2]. It is also easily seen that in this simple case of full blocks of 1-s with complements con-

sisting entirely of 0-s, the proposed algorithm diagonalizes any matrix Φ , regardless of its 

dimension and the dimension of the blocks. 

For 2131 <≤ α , the partition (9), (10) is not the only optimal partition: “non-contrast” 

partitions are also optimal in the sense of )R(J 1
α , such as 

 { }654321 1 ,,,,,Y = , { }7 2 =Y , 

 WG =1 , ∅=1GW \ , 

 { }321 2 ,,G = , { }7654 2 ,,,GW =\ . 

Using (5) instead of (2) leads to somewhat better results: the criterion (5) identifies a 

unique optimal partition (9), (10) in wider range of α  than criterion (2) ( 210 <≤ α ). 

Example 2. Now consider a matrix in which block of 1-s contain zeros and blocks of zeros 

contain 1-s: 

 

 

 

 

Using the functional (2) and 30 <≤ α , the sets 1Y  and 2Y  as in Example 1 take the 

form (9), and the sets 1G  and 2G  are 

 { }74 1 ,G = , { }1 2 =G , 

i.e., the nuclei of the systems 1
1 Φπα ,,W  and 1

2 Φπα ,,W  contain only zero rows. For 

2131 <≤ α , one of the optimal partitions is (9), (10); however, other partitions are also 

optimal, such as 

1 1 1 0 0 0 0 
1 1 1 0 1 0 0 
1 1 0 0 0 1 0 
0 0 0 0 1 1 1 
0 1 0 1 0 1 1 
0 0 1 1 1 1 1 

=2Φ  

0 0 0 1 1 1 1 
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 { }7531 1 ,,,Y = ,  { }642 2 ,,Y = , 

 { }75431 1 ,,,,G = , { }62 1 ,GW =\ , 

 { }421 2 ,,G = , { }7653 2 ,,,GW =\ . 

The criterion (5) for 2131 <≤ α  “identifies” the block-diagonal structure (9), (10) of 

the matrix 2Φ  and does not identify structures, which are essentially far from block-diagonal. 

Specifically, the only other optimal partition for the given criterion is a partition, which is 

“close” to (9), (10), 

 { }21 1 ,Y = ,  { }76543 2 ,,,,Y = , 

 { }764 1 ,,G = , { }5321, 1 ,,GW =\ , 

 { }321 2 ,,G = , { }7654 2 ,,,GW =\ . 

APPENDIX 

Proof of Theorems 1 and 2. 

We start with some definitions. Let a non-strict linear order P  be defined on a finite set 
W  ( NW = ). It orders all elements of the set into the sequence P

N
PPP i,..,i,iI 21= , where 

( ) Pi,i P
t

P
k ∈  for tk ≤  up to p -equal elements (elements x  and y  are p -equal if 

( ) Py,x ∈  and also ( ) Px,y ∈ ). 

P,,W π  is a p -monotone system if 

1) π,W  is a monotone system; 

2) )H,y()H,x( ππ <  for all ( ) Py,x ∈  and ( ) Px,y ∉ ; 

3) )H,y()H,x( ππ =  for equal x  and y  (for every WH ⊆ ). 

In [3,4], the nucleus of a monotone system is formed by constructing the defining se-
quence Ni,...,i,iI 21= : 

 )H,i()H,i(
Hi """
"

ππ
∈

= min , N,1=" , (A.1) 

where { }11 −= "" i,...,iWH \ , WH =1 , the nucleus { }Nmm i,...,iHG  ==  is defined by 
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. ,

,11 ,

N,m)H,i()H,i(

m,)H,i()H,i(

mm

mm

=≤

−=<

"

"

""

""

ππ

ππ
 (A.2) 

LEMMA A.1. The defining sequence of a p -monotone system coincides, up to permuta-

tions of p -equal elements, with the sequence PI . 

LEMMA A.2. If the element x  is included in the nucleus of a p -monotone system 

P,,W π  ( Gx ∈ ), then all the elements of the set W  p -equal to x  are also included in the 

nucleus. 

Corollary. The algorithm to identify the nucleus of a p -monotone system reduces to 

evaluating )H,i( ""π , N,1="  on the sequence PI . The nucleus G  is identified with the 

set mH  satisfying (A.2). 

It is easily seen that the complexity of finding G  by this algorithm is directly proportional 

to N , whereas for a general algorithm it is directly proportional to 2N . 6 

Proof of Lemma A.1. Suppose that the defining sequence Ni,...,i,iI 21=  has been con-

structed. Take two elements ki  and ti  such that tk < . 

By (A.1) we have 

 )H,i()H,i( ttkk ππ ≤ . (A.3) 

From the definition of the order P , there are three possible relations between the elements 

ki  and ti : ( ) Pi,i tk ∈ , or ( ) Pi,i kt ∈ , or finally the elements ki  and ti  are p -equal. But us-

ing property (2) of p -monotonicity and the inequality (A.3), we conclude that the case 

( ) Pi,i kt ∈  and ( ) Pi,i tk ∉  is impossible. Therefore, 

 ( ) Pi,i tk ∈ . 

Thus, for all N,t,k 1=  such that tk <  the elements of the defining sequence are in the 

order relation P . ! 

                                                           
6 More effective )NlogN(O 2⋅  general procedure for nucleus (kernel) search by constructing 

non-complete defining sequence may be found at http://www.datalaundering.com/download/classarv.pdf , 
noticed by JM. 

http://www.datalaundering.com/download/classarv.pdf
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Proof of Lemma A.2. The proof is by contradiction. Let the elements x  and y  be 

p -equal, while Gx ∈  and Gy ∉ . 

Consider the set { }yG  ∪ . By monotonicity of )H,i(π , for every Gi ∈ , we have 

 { } )G,i()yG,i( ππ ≥∪  . (A.4) 

By the third monotonicity property and (A.4), 

 { } { } )G,x()yG,x(yG,y( πππ ≥∪=∪   . (A.5) 

From (A.4) and (A.5) we have 

 { }
{ }

{ } )G(F)G,i()yG,i()yG(F
GiyGi

=≥∪=∪
∈∪∈

ππ min min 
 

, 

which contradicts the definition of the nucleus of a monotone system. ! 

LEMMA A.3. The system qq ,,W Φπα  is p -monotone, and its order P  is defined by the 

sequence of indexes in the series 

 q
i

q
i

q
i q

N
qq y...yy ≥≥≥
21

. 

The proof of this lemma reduces to direct verification of the p -monotonicity properties 

for the system qq ,,W Φπα . 

Theorem 1 follows from Lemmas A.2 and A.3, and Theorem 2 follows from lemmas A.1 

and A.3. 
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