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Abstract

Greedily seriating objects one by one is implicitly employed in many heuristic clustering

procedures, which can be described in terms of a linkage function measuring entity-to-set dis-

similarities.

A well-known clustering technique, single linkage clustering, can be considered as an example

of the seriation procedures (actually, based on the minimum spanning tree construction) leading

to the global maximum of a corresponding `minimum split' set function. The purpose of this

work is to extend this property to a wide class of the so-called monotone linkages. It is shown that

the minimumsplit functions of the monotone linkages can be greedily maximized. Moreover, this

class of set functions is proven to coincide with the class of so-called quasi-convex set functions.
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1 Introduction

The subject of this paper originated in cluster analysis as a generalization of a well-known method

called single linkage clustering [1]. Let D = (dij) be a symmetric N�N matrix of the dissimilarities

dij between elements, i; j, of an N -element set I . For a subset S � I and an element i 2 I � S,

let us de�ne l(i; S) = minj2S dij , single linkage dissimilarity between i and S. A sequence s =

(i1; i2; :::; iN) consisting of all elements of I will be referred to as a series, and sets Sk = fi1; :::; ikg

consisting of the initial fragments of s, as its starting sets (k = 1; 2; :::; N � 1). A series s =
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(i1; i2; :::; iN) is a single linkage series if, for every k = 1; :::; N � 1, the element ik+1 is a minimizer

of l(i; Sk) with regard to i 2 I � Sk. A starting set Sk of a series s can be referred to as a single

linkage cluster if it is maximally separated from the other elements along the series, that is, if

l(ik+1; Sk) is maximum over all k = 1; :::; N�1. Basically, a single linkage series de�nes a minimum

spanning tree (MST) of the graph whose vertex set is I and edge weight function is d = (dij),

in the framework of the well-known Dijkstra-Prim algorithm for �nding a MST. By cutting any

MST at any of the links (ik; ik+1) whose value dikik+1 is maximum over k = 1; :::; N � 1, the set I

is partitioned into two parts, one of which is a single linkage cluster. It can be shown that a set

function, L(S) := mini2I�S l(i; S), called the minimum split function, is maximized by every single

linkage cluster [2].

The single linkage l(i; S) satis�es a monotonicity property [3]: its value can only decrease when

some elements (not coinciding with i) are added to S. All the clustering concepts above can

be extended to an arbitrary monotone linkage function, d(i; S), whether it is de�ned in terms of a

dissimilarity matrix or not. This paper is aimed at proving that, for any monotone linkage function,

d, its minimum split function, Md(S) := mini2I�S d(i; S), has all its minimal maximizers among

the monotone linkage clusters de�ned over the monotone linkage series. Moreover, it appears that

the entire stock of the minimum split functions for the monotone linkages coincides with the set of

quasi-convex set functions F : P(I)! R de�ned by condition that

F (S1 \ S2) � min(F (S1); F (S2));

for any overlapping S1; S2 2 P(I) [4].

This provides both a simple algorithm for maximizing the quasi-convex set functions presented

as the minimum split functions for some monotone linkages and a natural mechanism for generation

of the quasi-convex set functions.

The remainder consists of the following. In Section 2, the monotone linkage and corresponding

minimum split function concepts are discussed, and their duality is proven as related to the quasi-

convex set functions. In Section 3, it is shown that the minimal maximizers of a minimum split

function are starting sets of the corresponding linkage series, while every non-minimal maximizer

is just a union of some of the minimal ones. An example is given in Section 4. The results are

discussed in Section 5.

2 Monotone Linkage and Quasi-Convex Set Function

Let, for every S � I and i 2 I � S, a dissimilarity measure, d(i; S), be given. Such a measure,

referred to as a linkage between i and S, can be de�ned in terms of di�erent data formats. For

example, for a data table X = (xik) where xik is the value of a variable k 2 K for any entity i 2 I ,
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a linkage measure can be de�ned as

ml(i; S) :=
X
k2K

min
j2S

jxik � xjkj:

The ml linkage is an example of a `holistic' measure which cannot be reduced to a function of

pair-wise dissimilarities. One might think also of a situation when a linkage measure arises just as

a primary data, e.g., in applications connected to VLSI or image processing.

Let us refer to a linkage function d(i; S), S � I; i 2 I � S, as a monotone linkage if d(i; S) �

d(i; T ) whenever S � T (for all i 2 I �T ). Both of the speci�c linkage functions considered, l(i; S)

and ml(i; S), are monotone.

Based on a linkage function d, a set function Md can be de�ned, as follows:

Md(S) := min
i2I�S

d(i; S): (1)

This set function was considered, among others, in [4]. Following the terminology introduced in

[2],Md can be referred to as the minimum split function for linkage d. The minimum split function

measures the minimum linkage between S, as a whole, and I � S as the set of the \individual"

entities. A set function F : P(I)! R is called quasi-convex [4] if

F (S1 \ S2) � min(F (S1); F (S2)); (2)

for any overlapping S1; S2 2 P(I).

Statement 1 The minimum split function of any monotone linkage is quasi-convex.

Proof: Let F (S) = Md(S) := mini2I�S d(i; S) for some monotone linkage d, and let S1; S2 be

overlapping subsets of I . Assume F (S1 \ S2) = d(i; S1 \ S2), F (S1) = d(j; S1) and F (S2) =

d(k; S2). By the de�nition of F , i does not belong either to S1 or to S2, say, i 62 S1. Then,

d(i; S1) � F (S1) = d(j; S1) and F (S1 \ S2) = d(i; S1 \ S2) � d(i; S1) due to monotonicity of d,

which proves that F is quasi-convex. 2

Let us de�ne now the maximum join linkage function dF for any set function F by:

dF (i; S) := max
S�T�I�i

F (T ) (3)

for any S � I and i 2 I � S.

Statement 2 The maximum join linkage dF is monotone.

Proof: Obvious since any increase of S makes the set of maximized values in (3) smaller. 2

Next, we show that in the setting de�ned by conditions of quasi-convexity and monotonicity,

the functions dF and Md are dual, that is, for any quasi-convex set function F : P(I) ! R, the

minimum split function of its maximum join linkage coincides with F . This immediately implies

that, for any monotone linkage d, the maximum join linkage of its minimum split function coincides

with d.
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Statement 3 For any quasi-convex set function F : P(I)! R, the minimum split function of its

maximum join linkage coincides with F .

Proof: For S � I and i 2 I � S, let Si be a maximizer of F (T ) over all T satisfying the condition

S � T � I � i, so that dF (i; S) = F (Si). The minimum split function for dF , by de�nition, is

equal to M(S) = mini62S F (Si). Thus, M(S) � F (\i62SSi), due to quasi-convexity of F (S). But

\i62SSi = S since S � Si and i 62 Si, for every i 62 S, which implies M(S) � F (S). On the other

hand, F (Si) � F (S), i 62 S, since S belongs to the set of the feasible subsets in the de�nition of Si

as a maximizer of F ; this implies that M(S) � F (S), which proves the statement. 2

The duality proven is asymmetric from the algorithmic point of view: it is quite easy to construct

the minimum split function Md associated with a linkage d while determining the maximum join

linkage dF by F : P(I)! R may be an exponentially hard problem: the former task involves the

elements i 2 I � S to enumerate while the latter task requires maximizing a set function F (T ).

This implies that it would be more appropriate to consider the monotone linkage as a means for

de�ning the quasi-convex set function rather than, reversely, the quasi-convex set function as a tool

for representing the monotone linkage.

Di�erent linkage functions d and d0 may produce coinciding minimum split functions,Md =Md0 .

The maximum join linkage is peculiar: it is the minimum in its class.

Statement 4 If a set function F is the minimum split function for a monotone linkage d, then

dF (i; S)� d(i; S) for any S � I and i 62 S.

Proof: For an arbitrary S � I , assume dF (i; S) = F (T ) for some T with S � T � I � i. By

de�nition, F (T ) = minj2I�T d(j; T ) � d(i; T ) since i 2 I � T . However, d(i; T ) � d(i; S) since

S � T and d is monotone. Thus, dF (i; S)� d(i; S). 2

3 Maximizing Minimum Split Quasi-Convex Set Function

Let us consider a quasi-convex set function F such that F = Md in (1) for a monotone linkage

function d. Let us refer to a series (i1; :::; iN) as a d-series if d(ik+1; Sk) = mini2I�Sk d(i; Sk) for

any starting set Sk = fi1; :::; ikg, k = 1; :::; N�1. This de�nition can be considered as a description

of a greedy procedure for construction of a d-series starting with any i1 2 I : having Sk de�ned,

take any i minimizing d(i; Sk) over all i 2 I � Sk as ik+1, k = 1; :::; N � 1. A subset S � I will

be referred to as a d-cluster if there exists a d-series, s = (i1; :::; iN), such that S is a maximizer of

F (S) over all starting sets Sk of s. Greedily found d-clusters play important part in maximizing of

the quasi-convex set functions.

Statement 5 Any maximizer of F includes a d-cluster which is a maximizer of F , also.
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Proof: Let S� be a maximizer of F and pi be a d-series starting from an i 2 S�. Then, let S� be

not a starting set of pi, which means that S� cannot be presented as a continuous segment of the

series pi. In this case, there are some elements, between i and the last element of S� in pi, that

do not belong to S�; let i� be the �rst of them. Let us prove that set Ti of the elements preceding

i� in pi is a maximizer of F . Indeed, F (Ti) = d(i�; Ti) by de�nition. Then, d(i�; S�) � F (S�) due

to (1) applied to S := S�. On the other hand, d(i�; Ti) � d(i�; S�) since d is a monotone linkage.

Thus, F (Ti) � F (S�), and Ti is a maximizer of F . Since Ti is a starting set of pi, it is a d-cluster,

which proves the statement. 2

Statement 6 If S1; S2 � I are overlapping maximizers of a quasi-convex set function F (S), then

S1 \ S2 is also a maximizer of F (S).

Proof: Obviously follows from (2). 2

This implies that the minimal (by inclusion) maximizers of a quasi-convex set function are not

overlapping and, thus, the number of them is not larger than N . Moreover, every non-minimal

maximizer can be partitioned into a set of the minimal ones:

Statement 7 Each maximizer of a quasi-convex set function is a union of its minimal maximizers

that are d-clusters.

Proof: Indeed, if S� is a maximizer of F = Md, then, for each i 2 S�, there exists a minimal

d-cluster containing i, as it follows from the proof of Statement 5. 2

Finding all the minimal maximizers of a quasi-convex set function F = Md for a monotone

linkage d is not a di�cult task. It can be solved with the following three-step extended greedy

procedure (EGP):

(A) For each i 2 I , greedily de�ne a d-series pi starting from i as its �rst element.

(B) For each of the d-series found, pi, �nd Ti, a minimal d-cluster as its smallest starting

fragment Sk having maximum F (Sk) = d(ik+1; Sk) over all k = 1; :::; N � 1.

(C) Among the non-coinciding minimal d-clusters Ti, i 2 I , choose those maximizing F .

Performing EGP takes O(N2g) time where g is the average time required to calculate the values

d(i; S), which is determined by the step (A) where N series are constructed, each taking O(Ng)

time.

Statement 8 EGP �nds all the minimal maximizers.

Proof: Assume that, for an i 2 I , there exists a series qi starting with i, whose minimal d-cluster

Qi does not belong to the set of clusters found with EGP. Then, Ti \ Qi contains i and, thus, is a

maximizer of F , strictly included in Ti, which contradicts the minimality of Ti along pi. 2
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4 Example

Let us consider set I = f1; 2; 3; 4; 5; 6g of the rows of a 6� 7 Boolean matrix X :

X =

1 0 1 1 0 0 1 1

2 1 0 1 0 1 1 0

3 0 1 1 1 1 0 1

4 1 0 0 1 1 0 0

5 1 0 1 1 0 1 0

6 0 1 0 1 0 1 0

The row-to-row Hamming distances (numbers of non-coinciding components) form the following

matrix:

D =

0
BBBBBBB@

0 4 3 7 4 3

4 0 5 3 2 5

3 5 0 4 5 4

7 3 4 0 3 4

4 2 5 3 0 3

3 5 4 4 3 0

1
CCCCCCCA

A D-based MST, presented in Fig. 1, shows that the following �ve subsets are the minimal

maximizers of the minimum split single linkage function L: f1g, f2; 5g, f3g, f4g, f6g, all corre-

sponding to the maximum value L(S) = 3. They form a partition of I since L(S) = L(I � S),

implying that all the entities must be covered by the maximizers of L.

The situation is slightly di�erent for the minimum split of ml; its minimal maximizers are f1g,

f3g, f4g, and f6g while none of the elements 2 and 5 belongs to a maximizer of Mml. Indeed, let

us take a look at six ml-series starting from each of the elements of I :

1(3)3(3)2(0)5(1)4(0)6, 2(2)5(2)4(2)6(1)1(0)3, 3(3)1(3)2(0)5(1)4(0)6,

4(3)2(1)5(2)6(1)1(0)3, 5(2)2(2)(2)6(1)1(0)3, 6(3)1(2)3(2)2(0)4(0)5.

The value ml(ik+1; Sk) is put in parentheses between every starting interval Sk seriated and ik+1

(k = 1; :::; 5). It can be seen that the maximum value 3 separates each of the four singletons

indicated while it never occurs in the series starting with 2 or 5.

5 Conclusion

The monotone linkage functions have been introduced, in clustering framework, by Mullat [3] who

called them `monotone systems' and considered set functions G(S) := maxi2S d(i; S) as greedily

minimizable. In this paper, the concept of minimum split function [2] is extended to the case of

the monotone linkage functions. We have proven that the minimal maximizers of a minimum split

function are monotone linkage clusters that can be found with the extended greedy procedure EGP.

This allows us to claim that the minimum split functions Md for the monotone linkages d present

yet another class of greedily maximizable functions, though the greedy series employed are d-series
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rather than Md-greedy series considered usually (see, for instance, [5]). We have proven also that

this class coincides with the class of quasi-convex set functions.

Although the problem of maximizing the quasi-convex set functions is exponentially hard when

they are oracle-de�ned [6], it can be resolved with the extended greedy procedure, when they are

associated with the monotone linkages via (1). Thus, the monotone linkage format may well serve

as an easy-to-interpret and easy-to-maximize means for dealing with the quasi-convex set functions.

On the other hand, the monotone linkage concept may be used as a framework for developing

clustering techniques based on the entity-to-set linkage functions rather than on the conventional

entity-to-entity dissimilarity measures. The `unclusterable', `noisy' entities frequently occurring in

the real-world data can be explicitly treated in this framework.
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Abstract-Greedily seriating objecte one by one is implicitly employed in many heuristic clu3-
tering proceduree which cau be described in terme of a linkage function measuring entity-teeet
dissimilaritic. A well-known clustering technique, single lintcage cluetering, can be considered aa an
ocample of the ssristion procedure (bas€d actually on the minimum spanning tree construction)
lading to the global maximum of a corrceponding "minimum split" set function. The purpose of
this work is to extend this property to the wide cla88 of socalled monotone linkages. It i8 shsrrn that
the minimum eplit functions of rnonotone linkqge can be ma:cimized gredity. Morover, this clnne
of set functions is proven to coincide with the clase of secallod guasi-concave e€t functions.

Keywords-Clustering, Monotone linlcage, Quasi-concavity, Greedy optimization.

I.. INTRODUCTION
The subject of this paper originated in cluster analysis as a generalization of a well-known method
called single linkage clustering [1]. t€t D : (di) be a syrnmetric /V x N matrix of the dissimi-
la'rities d;i between elements, i, j, of an N-element set f. For a nonempty subset S c f and an
element i e I - S, let us define r(i,.9) :: miojesdii, the single linkage dissimilarity between i
and S. A sequence I : (h,iz,...,ir) consisting of all elements of f wiil be referred to as a
serie's, and the sets ,Ss :: {ir,...,ir} consisting of the initial fragments of s, as its storting
sets (lc - 1,2,...'N - L). A series s = (ir,iz,...,i iv) is a single linkoge series rf, for every
lc:1,. . . ,N-1, theelement ir+r is aminimizerof t( i ,51) with regard toi e f  - ,9*. Astart ing
set St of a single linkage series I can be referred to as a single lir*oge clwter if it is maximally
sepa^rated from the other elements along that series, that is, if t(irr+r,,Sr) is mocimum over all
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k : 1,. . . ,N - 1. Basical ly, a single l inkage series s = ( ir , iz,. . . , i rv) defines a minimum span-
ning tree (MSf) of the graph whose vertex set is I and whose edge weight function is d = (drr),
according to the framework of the well-known Dijkstra-Prim algorithm for finding an MST; the
edges of that MST connect, for k - 1,. .. , N - 1, the vertex i111 with just one of the vertices
i e Sr with d;r+rj: l(ir+r,,Sr). By cutting any MST at all its mocimum weight edges (J, ir+r),
the set f is partitioned into classes that are inclusion-minirnal single linkage clusters; moreover,
a subset S c f is a single linkage cluster if and only if it is a union of some of the mocimum-
weight-edge-cut classes. Also, a set function, I(S) :: rnirrder-s r(i, S), called the minimum split
function, is maximized by every single linkage cluster [2].

The single linkage l(i, S) satisfies a monotonicity property [3]: its value can only decrease when
some elements (not coinciding with i) a,re added to 5. All the clustering concepts above can be
octended to an a^rbitrary monotone linkage function, d(i, S), whether it is defined in terms of
a dissimilarity matrix or not. This psper is aimed at proving that, for any rnonotone tiukage
function, d, its minimum split function, Md(S):= Finier-sd(i,^9), has all its inclusion-minimal
morimizers (over the set of nonempty proper subsets of /) among the "single linkage" clusters
defined via the "single linkage" series. Moreover, it appears that the entire stock of the minimum
split functions for the monotone linkages coincides with the set of quasi-concave set functions F
defined by the condition

F(St n Sz) ) min(F(S1), F(,S2)),

for any overlapping .91, Sz C I.
This provides both a simple algorithm for maximizing guasi-concave set functions presented

as minimum split functions for monotone linkage and a natural mechanism for generating quasi-
concave set functions.

The remainder consists of the following. In Section 2, the monotone linkage functions a"re
introduoed and minimum split and marcimum join concepts a^re analyzed; in particular, their
relation with quasi-concavrf ie stated. In Section 3, it is shoryn that the minimal mar<imizers
of a minimum split function are sta^rting sets of the corresponding linkage series, while every
nonminimal maximizer is just a union of some of the minimal ones. An ercanple is given in
Section 4. The results a.re discuss€d in Section 5.

2. MONOTONE TINKAGE AND QUASI-CONCAVE
SET FUNCTION

In this paper, we use symbol P- (I) to denote the set of all nonempty proper subsets of f so
t h a t 0 ,  I e P - g ) . [ , e t , f o r e v e r y S e P - ( I )  a n d i e l - S , a d i s s i m i l a r i t y m e a s u r e , d ( i , S ) ,
be given. Such a measure, referred to as a linkoge between i and S, can be defined in terms
of different data formats. Fior ecample, for a data table X - (o4) where 14 is the value of a
variable k e K for any entity i e I, a linkage measure can be defined as

mt(i,S) :: I -G1S lc* - sixl. (t)
FTx r

The nrl linkage is sn example of a "holisticn measure that cannot be reduced to a function of
pairwise dissimilarities.

Let us refer to a linkage function d(i,g), S e P-(J), i e I - S, s a monotone tinkage if,
d ( i , S ) > d ( i , T ) w h e n e v e r S E T ( f o r a t l i e l - T ) . B o t h o f t h e s p e c i f i c l i n k a g e f u n c t i o n s
considered, l(i, ,S) and m.f(i, S), a.re monotone.

Given a linkage function d, a set function Ma can be defrned on P-(/) as follows:

Ma(S\ ,: 
,S,1" 

d(i, S). (2)

This set function was considered, among others, in [a]. Following the terminology introduced
io [2], Ma cun be referred to as the rninimum spkt function for the linkage function d. The
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minimum split function measures the minimum linkage between ,9 as a whole and / - ,9 as the
set of the "individual" entities. A set function F : P- (/) * .R is called quosi-conu,ae l4l if

F(Sr n Sz) > min(F(.9r), .F'(,S2)),

for any overlapping Sr, Sz eP-U).

Asspnrton 1. The minirnum split ftnction of any monotone linl<age is quasi-concave.

Pnoor. Let ll(^9) :: Ma(S) : mint€r-sd(i,S) for some monotone linkage d, and let S1,S2
be orrcrlapping elements of, P-Q). Assume F(Sr n Sz) -- d(i,,S1 fl ^92), r'(Sr) : d(j,^91), and
F(Sz) : d(k,Sz). By the definition of F, i does not belong to at least one of Sr, ,Sz, say i / &,
Then, d(i,,S1) > ^F(Sr) : d(j,.S1) and F(Sr n Sz) : d(i,,Sr n.9z) > d(i,,S1) due to monotonicity
of d, which proves that F is quasi-concave. I

Let us define now the mo,ximurnjodn linkage function dp for any set function F : P- (I) -- R
as

dp(i,.9) :: 
ss?S_r F("),

for a,ny S eP-(/) a,nd i e I - S.

AsspRttott 2. Tle rna:cjmum join linl<age d,p is monotone.

Pnoor'. Obvious since any increase of S makes the set of mocimized values in ( ) smaller. I
Ne:<t, we show that in the setting defined by the conditions of quasi-concavity and monotonicity.

there is a relationship between the functions dp and Ma. Fbr any quasi-concave set function
F z P' (/) * E, the minimum split function of its maximum join linkage coincides with F
(Assertion 3). A mudr weaker property holds for the linkage functions: the mu<imum join
linlcage of the minimum split function of a monotone linkage d is not larger than d (Assertion 4).

Asspnrtou 3. Fbr any guasi-concave set function F : P-Q) - R, the minimum split function
of its maximum join linlcage coincides with F.

Pnoor' .  Fbr an S eP-(I) and ie I  -^9, let S, beamocimizerof F(T) over al l"satisfying
the condition,S g " E I -i, so that dp(i,S) : F(S,). The minimum split function for dr,, by
definition, is equal to M(S) :: min6gs f(Si). Thus, M(^9) < F(nres8;), due to quasi-concavity.
Butn;gs$i i : .9s ince,sg Si  andi  /  S; ,  forevery i /  S,  whichimpl ies M(S) S f ' ( f l .  On
the other hand, F(S') > F(S) for any i / S since .9 belongs to the set of feasible subsets in
the definition of & as a marcimizer of .F; this implies that M(S) > .F.(S)' which proves the
statement. t

Different linkage functions d and dt mey produce coinciding minimum split functions,
Md = Ma,. The ma:cimum join linkage is peculiar: it is the minimum in its cla,ss.

AssnnrloN 4. If a set function F js the minimum split function for a monotone linlage d, then
dp(i,S) S d(i,S) for aay S eP-(I) and i d S.

P n o o r ' . F o r a n a r b i t r a r y s e P - ( r ) a n d a n y i € r - . 5 , a s s u m e d e ( i , , s ) : F ( T ) f o r s o m e ?
wi thSE"EI - i .Byde f in i t i on 'F (T)  -m in ;e r - rd ( j , r )S  d ( i ,T )  s ince  ie I  -? .  However ,
d(i,T) < d(i,,S) since S E T and d is monotone. Thus, dp(i,S) S d(t, S). I

There is also an algorithmic asymmetry between the concepts introduced: it is quite easy to
construct the minimum split function Ma associated with a linkage d, while determining the
ma,:cimum join linkage dr for a set function F may be an e:<ponentially ha,rd problem: the former
task involves the elements i e I - S to enumerate, while the latter requires ma><imizing a set
tunction F'(T).

(3)

(4)
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3. MAXIMIZING MINIMUM SPLIT
QUASr-CONCAVE SET FUNCTTON

In this section, we analyze the problem of maximizing quasi-concave set functions on P-(f .
Let us consider a quasi'.concave set function F such that F - Ma in (2) for a monotone linkage
function d. Let us refer to a series (ir,. . . , iiv) as a d-series if d(ir-,"r, Sr) : nriniel-s. d(i,.gr) :
Jl(Sr) for any starting set .9p : {ir,...,ix},,t : 1,...,N - l. This definition describes a
greedy procedure for constructing a d-series starting with ir e f: having defined ,96, take any ?
minimizingd(i,S3) over al l  r .  e I-,S* os i&+r, Ic: 1,. . . ,N - 1. A subset S eP-(I) wi l l  be
referred to as s,d-cluster if there exists a d-series, e = (ir,..,,irv), such that ^9 is a mucimizer
of F(S) over all starting sets S1 of s. Greedily found, d,-clusters play an important part in
ma:rimizing the associated quasi-concarie set function.

AssnnrtoN 5. If, for a d-series s : (ir,iz,...,irv), a subset,S c / contains\, end i1.r1 is tle
filrolt element in s not containd in S (for sonre lc = 1,... , -lV - L), then

F(St) : d(ir+r, Sr) 2 d(i*+t, S) > F(^9),

wlere 51 - {dr,...,ir}. In particula4 if ^9 is an inclusion-minimal maximizer of F (with regard
toP-(I)), then,S = Sr, t^bat is, ,S is a d-cluster.

Pnoor'. Indeed, .F(Sr) : d(it+r,Sr) by definition; d(i5a1,S) ) d(rr+r,Sr) by monotonicity:
d(fr+r,Sr) 2 .F(Sr) because .F(Sn) : mini6y-s. d(i,,Sr) and ir+r / Sx. I

AsspnrtoN 6. If Sr,Sz C J are oveilapping maximizers of a quasi-concave set function F(-9)
over P- (/), then ,Sr fl Sz is also a ma>cimizer of F(S).

Pnoor'. Obviously follows from (3). I
This meBns that the set of all maximizers of F in P- (/) is a semilattice (with regard to set-

theoretic inclusion and intersection). Assertion 6 implies also that the minimal ma>cimizers of a
quasi-conceve set function over P- 0 are not overlapping. Moreover, any nonrninimal ma:<imizer
can be uniquely pa,rtitioned into a set of the minimal ones.

Asspnrtox 7. Erch maximizer of a quasiconcave set function (on P-(I)) is a union of its
incl nsion- minimal mudmizers,

PnOOp. Indeed, if ,S* is a maximizer of F : Ma over P-(f), then, according to Assertion 5, for
any i € S', there exists a minimal maximizer included in ,S' and containing i. I

It follows that we can find all minimal maximizers of a quasi-concave set function F = Ma on
P-(I)) for a monotone linkage d using the following three,step e.rtended, grced,y prccel,ure (EGP).

(A) For eaclt i e f, define some d-series p; greedily starting from i as its first element.
(B) Ftor each d-series p; = (ir :: i,iz,,...,irv), let 4 denote its smallest starting set with

.F(4) = m&KlSfr<N-r d(ir+t {f  t , .  .  .  ,  i r}).
(C) Among the noncoinciding minimal d-clusters Ti, i e.I, choose those maximizing F.

Performing EGP tekes O(Nag) time, where g is the average time required to calculate any
single value d(i, S) since, at Step (A), N series are constructed taking O(N2d time eanh.

Asspnrtow 8. Tie actended geedy procedure EGP fads aII the minimal maximizqs ot er P- (\ ,

PRoor'. Assume that, for some i e I, there exists a d-series gt sta^rting with i, whose minimal
4,cluster Q; does not belong to the set of clusters found with EGP. Then, TinQi contains i and,
thus, is a maximizer of F, strictly included in 4, which contradicts the minimality of Td. I
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4. EXAMPLE
Let us consider the set .[ of rows of a 6 x 7 Boolean matrix X:
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I
2
e

X : :  
v

4

5
6

0 1
t 0
0 1
t 0
1 0
0 1

1 0
1 0
r 1
0 1
l 1
0 1

0 1 1
1 1 0
1 0 1
1 0 0
0 1 0
0 1 0

The row-torow Hamming distances (numbers of noncoinciding components) form the matrix

D : =

There are five minimal maxirnizers of the associated minimum split single linkage function tr,
as can be seen from the D-based MST, presented in Figure 1: {1}, {2,5}, {3}, {4}, {6}, obtained
by cutting all the MST edges with ma:cimum weight 3.

Figure 1. A minimum spanning tree for matrix D.

The situation is somewhat diferent for the minimum split of the "holistic" linlc4ge nzl defined
in (1): its minimal ma:cimizers (over P-(I)) are {1}, {3}, {4}, and {6}, while none of the
elements 2 and 5 belongs to a ma:cimizer of. M^1. Indeed, let us take a look at the following six
ml-series starting from each of the elements of f: t(3)3(3)2(0)5(l)4(0)6, 2(2)5(2)4(2)6(1)1(0)3,
3(3)1(3)2(0)5(1)4(0)6, 4(3)2(1)5(2)p(1)1(0)3, 5(2)2(2X2)6(l)1(0)3, 6(3)1(2)3(2)2(0)4(0)5. rhe
value ml(ir+r,,9r) b put in the parentheses between every starting set ,Sp seriated and i311
(k : 1, . . . ,5). It can be seen that the maximum value 3 separates eactr of the four singletons
above while it never occurs in the series starting with 2 or 5.

5. CONCTUSION

The monotone linkage functions have been introduced, in the framework of clustering, by Mul-
lat [3] who called them 'monotone systems" and considered set functions C(,S) :: ma)ci€s d(i,,9)
as greedily minimizable. In this paper, the concept of a minimum split function [2J i" extended to
the case of monotone linkage functions. We have proven that the inclusion-minimal ma:cimizers
of a minimum split function &re monotone linkage clusters, all of which can be found with the
extended greedy procedure EGP. This allows us to claim that the minimum split functions Ma
for monotone linkages d present yet another class of greedily ma>cimizable functions, though the
greediness here is associated with the definition of Maviz d rather than with direct maximization
of, Ma considered ueually (as, for insta,nce, in [5]). We have proven also that this class coincides
with the class of quasi-concave set functions.

Although the problem of ma:cimizing guasi-concave set functions is exponentially hard when
they are oracle-defined [6J, it can be resolved with the extended greedy procedure when they ale

0 4 3
4 0 5
3 5 0
7 3 4
4 2 5
3 5  4

7 4 3
3 2 5
4 5 4
0 3  4
3 0 3
4 3 0
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defined in terms of a monotone linkage. Thus, the monotone linkage format may well senre as an
easy-to-interpret and easy-to-maximize input for dealing with quasi-concave set functions.

On the other hand, the monotone linkage concept may be used as a framework for developing
clustering techniques based on entity-to-set linkages rather than on conventional entity-to-entity
dissimilarity measures. The uunclusterable,t' "noisy" entities frequently occurring in real-world
data can be treated ocplicitly in this framework.

The constructioru described only involve ordering information in both the domain and range of
set/linkage functions, and also, they rely on the fact that every subset is uniquely decomposable
into its elements. Therefore, they can be extended to distributive lattice structures considering
the set of irreducible elements as f (t*, for instance, [7] where relations between monotonicity
and quasi-concavity on distributive lattices and semilattices have been studied).
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