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Abstract

Greedily seriating objects one by one is implicitly employed in many heuristic clustering
procedures, which can be described in terms of a linkage function measuring entity-to-set dis-
similarities.

A well-known clustering technique, single linkage clustering, can be considered as an example
of the seriation procedures (actually, based on the minimum spanning tree construction) leading
to the global maximum of a corresponding ‘minimum split’ set function. The purpose of this
work is to extend this property to a wide class of the so-called monotone linkages. It is shown that
the minimum split functions of the monotone linkages can be greedily maximized. Moreover, this
class of set functions is proven to coincide with the class of so-called quasi-convex set functions.
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1 Introduction

The subject of this paper originated in cluster analysis as a generalization of a well-known method
called single linkage clustering [1]. Let D = (d;;) be a symmetric N x N matrix of the dissimilarities
d;; between elements, ¢,7, of an N-element set I. For a subset 5 C I and an element ¢ € [ — 5,
let us define [(¢,5) = minjesd;;, single linkage dissimilarity between ¢ and S. A sequence s =
(1,12, ..., i) consisting of all elements of I will be referred to as a series, and sets S = {i1,..., 1%}

consisting of the initial fragments of s, as its starting sets (k = 1,2,..., N — 1). A series s =
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(i1,12, ..., inN) is a single linkage series if, for every k = 1,..., N — 1, the element 7441 is a minimizer
of I(7,S) with regard to 7 € [ — 5). A starting set S; of a series s can be referred to as a single
linkage cluster if it is maximally separated from the other elements along the series, that is, if
l(k41, S%) is maximum over all k = 1,..., N —1. Basically, a single linkage series defines a minimum
spanning tree (MST) of the graph whose vertex set is I and edge weight function is d = (d;;),
in the framework of the well-known Dijkstra-Prim algorithm for finding a MST. By cutting any

MST at any of the links (i, {x4+1) whose value d is maximum over k = 1,..., N — 1, the set [

Tktk41
is partitioned into two parts, one of which is a sing+le linkage cluster. It can be shown that a set
function, L(9) := min;e;—s(7,.5), called the minimum split function, is maximized by every single
linkage cluster [2].

The single linkage (¢, 9) satisfies a monotonicity property [3]: its value can only decrease when
some elements (not coinciding with 7) are added to S. All the clustering concepts above can
be extended to an arbitrary monotone linkage function, d(7,.5), whether it is defined in terms of a
dissimilarity matrix or not. This paper is aimed at proving that, for any monotone linkage function,
d, its minimum split function, My(S) := min;e;_s d(¢,5), has all its minimal maximizers among
the monotone linkage clusters defined over the monotone linkage series. Moreover, it appears that

the entire stock of the minimum split functions for the monotone linkages coincides with the set of

quasi-convex set functions F': P(I) — R defined by condition that
F(Sl N 52) Z mm(F(Sl), F(Sz)),

for any overlapping 57,52 € P(I) [4].

This provides both a simple algorithm for maximizing the quasi-convex set functions presented
as the minimum split functions for some monotone linkages and a natural mechanism for generation
of the quasi-convex set functions.

The remainder consists of the following. In Section 2, the monotone linkage and corresponding
minimum split function concepts are discussed, and their duality is proven as related to the quasi-
convex set functions. In Section 3, it is shown that the minimal maximizers of a minimum split
function are starting sets of the corresponding linkage series, while every non-minimal maximizer
is just a union of some of the minimal ones. An example is given in Section 4. The results are

discussed in Section 5.

2 Monotone Linkage and Quasi-Convex Set Function

Let, for every S C I and 7 € I — 9, a dissimilarity measure, d(7,5), be given. Such a measure,
referred to as a linkage between 7 and .5, can be defined in terms of different data formats. For

example, for a data table X = (a;;) where z;; is the value of a variable k& € K for any entity 7 € [,
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a linkage measure can be defined as

ml(i,9):= kezlz jelgl |k — k]
The ml linkage is an example of a ‘holistic’ measure which cann@oe reduced to a function of
pair-wise dissimilarities. One might think also of a situation when a linkage measure arises just as
a primary data, e.g., in applications connected to VLSI or image processing.

Let us refer to a linkage function d(7,5), 5 C I,: € I — 5, as a monotone linkage if d(i,5) >
d(¢,T) whenever S C T (for all ¢ € I —T'). Both of the specific linkage functions considered, (7, .5)
and ml(¢,5), are monotone.

Based on a linkage function d, a set function My can be defined, as follows:

My(S5):= Zg}l_ns d(z,9). (1)
This set function was considered, among others, in [4]. Following the terminology introduced in
[2], My can be referred to as the minimum split function for linkage d. The minimum split function
measures the minimum linkage between 5, as a whole, and I — 5 as the set of the “individual”

entities. A set function F': P(I) — R is called quasi-convex [4] if

F(51 N 52) > min(F(51), F'(52)), (2)
for any overlapping 51,52 € P(I).
Statement 1 The minimum split function of any monotone linkage is quasi-convez.

Proof: Let F(S5) = My(S) := min;er_sd(7,5) for some monotone linkage d, and let 57,55 be
overlapping subsets of I. Assume F(S1 N S3) = d(¢,51 N S2), F(S1) = d(j,51) and F(5;) =
d(k,S2). By the definition of F', ¢ does not belong either to S7 or to 93, say, ¢ ¢ S1. Then,
d(i,51) > F(51) = d(j,51) and F(S1 N Sg) = d(i,5 N S2) > d(i,51) due to monotonicity of d,
which proves that F is quasi-convex. a

Let us define now the mazimum join linkage function dp for any set function F' by:
dr(i,9):= ngT%)I(—iF(T) (3)

forany S C Tandie I — 5.
Statement 2 The maximum join linkage dr is monotone.

Proof: Obvious since any increase of S makes the set of maximized values in (3) smaller. O

Next, we show that in the setting defined by conditions of quasi-convexity and monotonicity,
the functions dp and M, are dual, that is, for any quasi-convex set function F' : P(I) — R, the
minimum split function of its maximum join linkage coincides with F. This immediately implies
that, for any monotone linkage d, the maximum join linkage of its minimum split function coincides

with d.
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Statement 3 For any quasi-convex set function F': P(I) — R, the minimum split function of its

mazimum join linkage coincides with F.

Proof: For S C [ and ¢ € [ — 5, let S; be a maximizer of F(T') over all T" satisfying the condition
S CT C1I—1,so0that dp(i,5) = F(S5;). The minimum split function for dp, by definition, is
equal to M(5) = min;gs F(5;). Thus, M(S5) < F(N;gs5;), due to quasi-convexity of F(.5). But
NigsS; = S5 since S C 55 and ¢ € 5;, for every ¢ ¢ S, which implies M(.5) < F(5). On the other
hand, F(S;) > F(5),1 ¢ 5, since S belongs to the set of the feasible subsets in the definition of 5;
as a maximizer of F'; this implies that M(.S) > F(.9), which proves the statement. a

The duality proven is asymmetric from the algorithmic point of view: it is quite easy to construct
the minimum split function My associated with a linkage d while determining the maximum join
linkage dp by F': P(I) — R may be an exponentially hard problem: the former task involves the
elements ¢ € I — 5 to enumerate while the latter task requires maximizing a set function F(7').
This implies that it would be more appropriate to consider the monotone linkage as a means for
defining the quasi-convex set function rather than, reversely, the quasi-convex set function as a tool
for representing the monotone linkage.

Different linkage functions d and d’ may produce coinciding minimum split functions, My = My.

The maximum join linkage is peculiar: it is the minimum in its class.

Statement 4 If a set function F is the minimum split function for a monotone linkage d, then

dr(i,5) < d(¢,5) forany S C 1 and i ¢ S.

Proof: For an arbitrary S C I, assume dp(7,5) = F(T) for some T with § C T C [ — . By
definition, F(T') = min;e;_7d(j,T) < d(¢,T) since ¢ € [ —T. However, d(¢,1) < d(i,5) since
S C T and d is monotone. Thus, dr(i,5) < d(¢,.9). 0

3 Maximizing Minimum Split Quasi-Convex Set Function

Let us consider a quasi-convex set function F' such that F' = My in (1) for a monotone linkage
function d. Let us refer to a series (i1, ...,1n) as a d-series if d(ig4q1,S%) = minger_g, d(¢, Sg) for
any starting set Sy = {iy,...,ix}, k = 1, ..., N— 1. This definition can be considered as a description
of a greedy procedure for construction of a d-series starting with any ¢y € I: having 5} defined,
take any ¢ minimizing d(i, Sg) over all ¢ € [ — Sy as ig41, k = 1,..., N — 1. A subset § C [ will
be referred to as a d-cluster if there exists a d-series, s = (i1, ...,in), such that S is a maximizer of
F(S) over all starting sets S of s. Greedily found d-clusters play important part in maximizing of

the quasi-convex set functions.

Statement 5 Any maximizer of F includes a d-cluster which is a maximizer of F, also.



Proof: Let 5* be a maximizer of F' and p; be a d-series starting from an ¢ € §*. Then, let 5* be
not a starting set of p;, which means that 5* cannot be presented as a continuous segment of the
series p;. In this case, there are some elements, between ¢ and the last element of 5™ in p;, that
do not belong to 5*; let :* be the first of them. Let us prove that set T; of the elements preceding
" in p; is a maximizer of F. Indeed, F(1;) = d(¢*,T;) by definition. Then, d(:*,5%) > F(5*) due
to (1) applied to S := §*. On the other hand, d(*,T;) > d(:*,5*) since d is a monotone linkage.
Thus, F(T;) > F(S*), and T; is a maximizer of F'. Since T} is a starting set of p;, it is a d-cluster,

which proves the statement. a

Statement 6 If 51,5, C I are overlapping mazimizers of a quasi-convex set function F(S), then

S1N0 Sy is also a maximizer of FI(5).

Proof: Obviously follows from (2). 0
This implies that the minimal (by inclusion) maximizers of a quasi-convex set function are not
overlapping and, thus, the number of them is not larger than N. Moreover, every non-minimal

maximizer can be partitioned into a set of the minimal ones:

Statement 7 Fach mazimizer of a quasi-convex set function is a union of its minimal maximizers

that are d-clusters.

Proof: Indeed, if 5 is a maximizer of F' = My, then, for each ¢ € 5%, there exists a minimal
d-cluster containing ¢, as it follows from the proof of Statement 5. a

Finding all the minimal maximizers of a quasi-convex set function F' = M, for a monotone
linkage d is not a difficult task. It can be solved with the following three-step extended greedy
procedure (EGP):

(A) For each ¢ € I, greedily define a d-series p; starting from ¢ as its first element.

(B) For each of the d-series found, p;, find 7;, a minimal d-cluster as its smallest starting
fragment Sy having maximum F(S;) = d(ig41,9%) over all k=1,..., N — 1.

(C) Among the non-coinciding minimal d-clusters T;, ¢ € I, choose those maximizing F'.

Performing EGP takes O(NZ%g) time where g is the average time required to calculate the values
d(¢,5), which is determined by the step (A) where N series are constructed, each taking O(Ng)

time.
Statement 8 EGP finds all the minimal mazimizers.

Proof: Assume that, for an ¢ € I, there exists a series ¢; starting with ¢, whose minimal d-cluster
(); does not belong to the set of clusters found with EGP. Then, T; N ¢); contains ¢ and, thus, is a

maximizer of F’, strictly included in T;, which contradicts the minimality of T; along p,. O



4 Example

Let us consider set I = {1,2,3,4,5,6} of the rows of a 6 x 7 Boolean matrix X:

110 11 0 0 1 1
21101 01 1 0
3101111 01
X_41001100
5/1 0 1 10 1 0
6/0 1 01 0 1 0

The row-to-row Hamming distances (numbers of non-coinciding components) form the following

matrix:
0 4 3 7 4 3
4 0 5 3 2 5
35 0 4 5 4
D= 73 4 0 3 4
4 2 5 3 0 3
35 4 4 30

A D-based MST, presented in Fig. 1, shows that the following five subsets are the minimal
maximizers of the minimum split single linkage function L: {1}, {2,5}, {3}, {4}, {6}, all corre-
sponding to the maximum value L(S) = 3. They form a partition of I since L(5) = L(I - 9),
implying that all the entities must be covered by the maximizers of L.

The situation is slightly different for the minimum split of ml; its minimal maximizers are {1},
{3}, {4}, and {6} while none of the elements 2 and 5 belongs to a maximizer of M,,;. Indeed, let
us take a look at six ml-series starting from each of the elements of I:
1(3)3(3)2(0)5(1)4(0)6, 2(2)5(2)4(2)6(1)1(0)3, 3(3)1(3)2(0)5(1)4(0)6,
4(3)2(1)5(2)6(1)1(0)3, 5(2)2(2)(2)6(1)1(0)3, 6(3)1(2)3(2)2(0)4(0)5.

The value ml(ig41,9%) is put in parentheses between every starting interval S seriated and ijyq
(k =1,...,5). It can be seen that the maximum value 3 separates each of the four singletons

indicated while it never occurs in the series starting with 2 or 5.

5 Conclusion

The monotone linkage functions have been introduced, in clustering framework, by Mullat [3] who
called them ‘monotone systems’ and considered set functions G(.5) := max;egd(7,9) as greedily
minimizable. In this paper, the concept of minimum split function [2] is extended to the case of
the monotone linkage functions. We have proven that the minimal maximizers of a minimum split
function are monotone linkage clusters that can be found with the extended greedy procedure EGP.
This allows us to claim that the minimum split functions My for the monotone linkages d present

yet another class of greedily maximizable functions, though the greedy series employed are d-series



rather than My-greedy series considered usually (see, for instance, [5]). We have proven also that
this class coincides with the class of quasi-convex set functions.

Although the problem of maximizing the quasi-convex set functions is exponentially hard when
they are oracle-defined [6], it can be resolved with the extended greedy procedure, when they are
associated with the monotone linkages via (1). Thus, the monotone linkage format may well serve
as an easy-to-interpret and easy-to-maximize means for dealing with the quasi-convex set functions.

On the other hand, the monotone linkage concept may be used as a framework for developing
clustering techniques based on the entity-to-set linkage functions rather than on the conventional
entity-to-entity dissimilarity measures. The ‘unclusterable’, ‘noisy’ entities frequently occurring in

the real-world data can be explicitly treated in this framework.

References

[1] P.H.A. Sneath and R.R. Sokal, Numerical Taxonomy, W.H. Freeman, San Francisco (1973).

[2] M. Delattre and P. Hansen, Bicriterion cluster analysis, IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (PAMI) 4, 277-291 (1980).

[3] J. Mullat, Extremal subsystems of monotone systems: I, II; Automation and Remote Control

monotone systems, Automation and Remote Control 50, 553-560 (1989).

[6] A.W.M. Dress and W. Terhalle, Well-layered maps - a class of greedily optimizable set func-
tions, Appl. Math. Lett. 8(5), 77-80 (1995).

[6] V. Levit, Oracle-defined quasi-convex set functions are exponentially hard to maximize. Per-

sonal communication (1995).


http://www.datalaundering.com/download/extrem01.pdf
http://www.datalaundering.com/download/extrem02.pdf
http://www.datalaundering.com/download/incomple.pdf
Joseph E. Mullat
To download the article in blue dashes click the rectangular!


Y. Kempner, B. Mirkin, I. Muchnik.

Monotone linkage clustering and quasi-convez set functions

Figure 1: A minimum spanning tree for matrix D.



Appl. Math. Lett. Vol. 10, No. 4, pp. 19-24, 1997
Pergamon Copyright(©1997 Elsevier Science Ltd
Printed in Great Britain. All rights reserved
0893-9659/97 $17.00 + 0.00
PII: S0893-9659(97)00053-0 /

Monotone Linkage Clustering
and Quasi-Concave Set Functions

Y. KEMPNER
School of Mathematical Sciences, Tel-Aviv University
Ramat-Aviv 69978, Israel

B. MIRKIN®
DIMACS, Rutgers University
P.O. Box 1179, Piscataway, NJ 08855-1179, U.S.A.
and
CEMI of Russian Academy of the Sciences, Moscow, Russia

I. MUCHNIK
RUTCOR, Rutgers University
New Brunswick, NJ 08903, U.S.A.

(Received December 1996; accepted January 1997)
Communicated by A. Dress

Abstract—Greedily seriating objects one by one is implicitly employed in many heuristic clus-
tering procedures which can be described in terms of a linkage function measuring entity-to-set
dissimilarities. A well-known clustering technique, single linkage clustering, can be considered as an
example of the seriation procedures (based actually on the minimum spanning tree construction)
leading to the global maximum of a corresponding “minimum split” set function. The purpose of
this work is to extend this property to the wide class of so-called monotone linkages. It is shown that
the minimum split functions of monotone linkages can be maximized greedily. Moreover, this class
of set functions is proven to coincide with the class of so-called quasi-concave set functions.
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1. INTRODUCTION

The subject of this paper originated in cluster analysis as a generalization of a well-known method
called single linkage clustering [1]. Let D = (d;;) be a symmetric N x N matrix of the dissimi-
larities d;; between elements, i, 7, of an N-element set I. For a nonempty subset S C I and an
element i € I — S, let us define (i, S) := minjes d;j, the single linkage dissimilarity between i
and S. A sequence s = (i1,43,...,iy) consisting of all elements of I will be referred to as a
series, and the sets Sy := {i),...,ix} consisting of the initial fragments of s, as its starting
sets (k = 1,2,...,N —1). A series s = (i1,4a,...,in) is a single linkage series if, for every
k=1,...,N -1, the element ix4, is a minimizer of I(, Sy) with regard to i € I — Si. A starting
set Sy of a single linkage series s can be referred to as a single linkage cluster if it is maximally
separated from the other elements along that series, that is, if I(¢x41, Sk) is maximum over all
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k=1,...,N — 1. Basically, a single linkage series s = (i1,12,...,ix5) defines a minimum span-
ning tree (MST) of the graph whose vertex set is I and whose edge weight function is d = (d;,),
according to the framework of the well-known Dijkstra-Prim algorithm for finding an MST; the
edges of that MST connect, for £ = 1,...,N — 1, the vertex ix,; with just one of the vertices
J € Sk with d;, ,,; = l(¢k+1, Sk). By cutting any MST at all its maximum weight edges (j,ix+1),
the set I is partitioned into classes that are inclusion-minimal single linkage clusters; moreover,
a subset S C I is a single linkage cluster if and only if it is a union of some of the maximum-
weight-edge-cut classes. Also, a set function, L(S) := min;e;-s (4, S), called the minimum split
function, is maximized by every single linkage cluster [2].

The single linkage (3, S) satisfies a monotonicity property [3): its value can only decrease when
some elements (not coinciding with i) are added to S. All the clustering concepts above can be
extended to an arbitrary monotone linkage function, d(i, S), whether it is defined in terms of
a dissimilarity matrix or not. This paper is aimed at proving that, for any monotone linkage
function, d, its minimum split function, My(S) := mine;_g d(4, S), has all its inclusion-minimal
maximizers (over the set of nonempty proper subsets of J) among the “single linkage” clusters
defined via the “single linkage” series. Moreover, it appears that the entire stock of the minimum
split functions for the monotone linkages coincides with the set of quasi-concave set functions F
defined by the condition

F(51NS3) 2 min(F(S1), F(S,)),

for any overlapping 53,5 C I.

This provides both a simple algorithm for maximizing quasi-concave set functions presented
as minimum split functions for monotone linkage and a natural mechanism for generating quasi-
concave set functions.

The remainder consists of the following. In Section 2, the monotone linkage functions are
introduced and minimum split and maximum join concepts are analyzed; in particular, their
relation with quasi-concavity is stated. In Section 3, it is shown that the minimal maximizers
of a minimum split function are starting sets of the corresponding linkage series, while every
nonminimal maximizer is just a union of some of the minimal ones. An example is given in
Section 4. The results are discussed in Section 5.

2. MONOTONE LINKAGE AND QUASI-CONCAVE
SET FUNCTION

In this paper, we use symbol P~(I) to denote the set of all nonempty proper subsets of I so
that 0,1 ¢ P~(I). Let, for every S € P~(I) and i € I — S, a dissimilarity measure, d(i, S),
be given. Such a measure, referred to as a linkage between i and S, can be defined in terms
of different data formats. For example, for a data table X = (z;x) where z; is the value of a
variable k € K for any entity i € I, a linkage measure can be defined as

mi(i,S) =) min Tk — skl (1)
kK

The ml linkage is an example of a “holistic” measure that cannot be reduced to a function of
pairwise dissimilarities.

Let us refer to a linkage function d(3,S), S € P~(I), i € I — S, as a monotone linkage if
d(¢,S) > d(i,T) whenever S C T (for all i € I —~ T). Both of the specific linkage functions
considered, (i, S) and ml(i, S), are monotone.

Given a linkage function d, a set function M, can be defined on P~ (I) as follows:

Mqy(8S) := '_glll_nsd(z,S). (2)
This set function was considered, among others, in [4). Following the terminology introduced
in [2], Mg can be referred to as the minimum split function for the linkage function d. The
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minimum split function measures the minimum linkage between S as a whole and I — S as the
set of the “individual” entities. A set function F : P~(I) — R is called quasi-concave [4] if

F(S1 N S3) > min(F(S,), F(S2)), (3)
for any overlapping S1,S2 € P~(I).

ASSERTION 1. The minimum split function of any monotone linkage is quasi-concave.

PROOF. Let F(S) := My(S) = mine;_gd(i,S) for some monotone linkage d, and let Sy, S,
be overlapping elements of P~(I}). Assume F(S; N S;) = d(i,S1 N S2), F(S1) = d(4,81), and
F(83) = d(k, S2). By the definition of F', i does not belong to at least one of Sy, Sy, say i & .
Then, d(i,S1) 2 F(S1) = d(j,S1) and F(S; N S) = d(3, 51 N S3) > d(4, S1) due to monotonicity
of d, which proves that F is quasi-concave. |

Let us define now the mazimum join linkage function dr for any set function F : P~(I) — R
as

dp(i, S) == Sg%l‘g);—i F(T), (4)

forany Se P~(I)andiel-S.

ASSERTION 2. The maximum join linkage dr is monotone.

PROOF. Obvious since any increase of S makes the set of maximized values in (4) smaller. |

Next, we show that in the setting defined by the conditions of quasi-concavity and monotonicity.
there is a relationship between the functions dp and My. For any quasi-concave set function
F : P~(I) — R, the minimum split function of its maximum join linkage coincides with F
(Assertion 3). A much weaker property holds for the linkage functions: the maximum join
linkage of the minimum split function of a monotone linkage d is not larger than d (Assertion 4).

ASSERTION 3. For any quasi-concave set function F : P~(I) — R, the minimum split function
of its maximum join linkage coincides with F.

PROOF. For an § € P~(I) and i € I - S, let S; be a maximizer of F(T) over all T satisfying
the condition § C T C I — 1, so that dp(i, ) = F(S;). The minimum split function for dr, by
definition, is equal to M(S) := min;gs F(S;). Thus, M(S) < F(N;¢sS;), due to quasi-concavity.
But NigsS; = S since S C S; and i ¢ S;, for every i ¢ S, which implies M(S) < F(S). On
the other hand, F(S;) > F(S) for any i ¢ S since S belongs to the set of feasible subsets in
the definition of S; as a maximizer of F; this implies that M(S) > F(S), which proves the
statement. [ ]

Different linkage functions d and d’ may produce coinciding minimum split functions,
My = Myp. The maximum join linkage is peculiar: it is the minimum in its class.

ASSERTION 4. If a set function F is the minimum split function for a monotone linkage d, then
dr(i,8) < d(i,S) forany S€ P~(I) and i ¢ S.

PROOF. For an arbitrary § € P~(I) and any ¢ € I — S, assume dp(i,S) = F(T) for some T
with § C T C I —i. By definition, F(T) = minje;-7 d(j, T) < d(i,T) since i € I — T. However,
d(i,T) < d(i, S) since § C T and d is monotone. Thus, dr(i, S) < d(4, S). |

There is also an algorithmic asymmetry between the concepts introduced: it is quite easy to
construct the minimum split function My associated with a linkage d, while determining the
maximum join linkage dr for a set function F may be an exponentially hard problem: the former

task involves the elements i € I — S to enumerate, while the latter requires maximizing a set
function F(T).
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3. MAXIMIZING MINIMUM SPLIT
QUASI-CONCAVE SET FUNCTION

In this section, we analyze the problem of maximizing quasi-concave set functions on P~ (I).
Let us consider a quasi-concave set function F such that F = My in (2) for a monotone linkage
function d. Let us refer to a series (i1,...,in) as a d-series if d(ik+1, Sk) = miner—s, d(i, Si) =
F(Sk) for any starting set Sk = {i1,...,ix}, k = 1,...,N — 1. This definition describes a
greedy procedure for constructing a d-series starting with i) € I: having defined Sk, take any i
minimizing d(,Sk) over all i € I — Sy a8 41, k =1,...,N — 1. A subset S € P~(I) will be
referred to as a d-cluster if there exists a d-series, s = (4;,...,in), such that S is a maximizer
of F(S) over all starting sets Si of s. Greedily found, d-clusters play an important part in
maximizing the associated quasi-concave set function.

ASSERTION 5. If, for a d-series s = (i1,12,...,in), 8 subset S C I contains 4, and ix4, is the
first element in s not contained in S (for some k =1,...,N — 1), then

F(Sk) = d(ik41,Sk) 2> d(ir41,8) > F(S),

where Sk = {i1,...,ix}. In particular, if § is an inclusion-minimal maximizer of F' (with regard
to P~(I)), then S = Sk, that is, S is a d-cluster.

PROOF. Indeed, F(Sk) = d(ik41,Sk) by definition; d(ix+1,S) > d(ik+1,Sk) by monotonicity:
d(ik41,Sk) = F(Sk) because F(Sk) = minies_g, d(¢, Sk) and igy) & Sk. [ ]

ASSERTION 6. If S1,S; C I are overlapping maximizers of a quasi-concave set function F(S)
over P~(I), then S; N S; is also a maximizer of F(S).

PROOF. Obviously follows from (3). ]
This means that the set of all maximizers of F in P~(I) is a semilattice (with regard to set-
theoretic inclusion and intersection). Assertion 6 implies also that the minimal maximizers of a

quasi-concave set function over P~(I) are not overlapping. Moreover, any nonminimal maximizer
can be uniquely partitioned into a set of the minimal ones.

ASSERTION 7. Each maximizer of a quasi-concave set function (on P~(I)) is a union of its
inclusion-minimal maximizers.

PROOF. Indeed, if S* is a maximizer of F = My over P~(I), then, according to Assertion 5, for
any ¢ € S*, there exists a minimal maximizer included in S* and containing 3. (]

It follows that we can find all minimal maximizers of & quasi-concave set function F = M on
P~(I)) for a monotone linkage d using the following three-step extended greedy procedure (EGP).

(A) For each i € I, define some d-series p; greedily starting from i as its first element.

(B) For each d-series p; = (i; := 4,4,...,in), let T; denote its smallest starting set with
F(T;) = maxicegn-1 @(ik+1, {11, - - 8k })-

(C) Among the noncoinciding minimal d-clusters T}, i € I, choose those maximizing F.

Performing EGP takes O(N3g) time, where g is the average time required to calculate any
single value d(3, S) since, at Step (A), N series are constructed taking O(N2g) time each.

ASSERTION 8. The extended greedy procedure EGP finds all the minimal maximizers over P~ (I).

PROOF. Assume that, for some i € I, there exists a d-series g; starting with i, whose minimal
d-cluster Q; does not belong to the set of clusters found with EGP. Then, T; N Q; contains i and,
thus, is a maximizer of F, strictly included in T;, which contradicts the minimality of T;. [ ]
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4. EXAMPLE

Let us consider the set I of rows of a 6 x 7 Boolean matrix X:

110110011
2/1 010110
x.o3[01 11101
T 4(1 001100
5|1 011010
6|0 101010

The row-to-row Hamming distances (numbers of noncoinciding components) form the matrix

0 43743
4 053 25
35045 4

D= 7 340 3 4
4 25 30 3
354430

There are five minimal maximizers of the associated minimum split single linkage function L,
as can be seen from the D-based MST, presented in Figure 1: {1}, {2, 5}, {3}, {4}, {6}, obtained
by cutting all the MST edges with maximum weight 3.

Figure 1. A minimum spanning tree for matrix D.

The situation is somewhat different for the minimum split of the “holistic” linkage m! defined
in (1): its minimal maximizers (over P~(I)) are {1}, {3}, {4}, and {6}, while none of the
elements 2 and 5 belongs to a maximizer of M,,;. Indeed, let us take a look at the following six
ml-series starting from each of the elements of I: 1(3)3(3)2(0)5(1)4(0)6, 2(2)5(2)4(2)6(1)1(0)3,
3(3)1(3)2(0)5(1)4(0)6, 4(3)2(1)5(2)6(1)1(0)3, 5(2)2(2)(2)6(1)1(0)3, 6(3)1(2)3(2)2(0)4(0)5. The
value ml(ix41,Sk) is put in the parentheses between every starting set Sy seriated and x4
(k =1,...,5). It can be seen that the maximum value 3 separates each of the four singletons
above while it never occurs in the series starting with 2 or 5.

5. CONCLUSION

The monotone linkage functions have been introduced, in the framework of clustering, by Mul-
lat {3] who called them “monotone systems” and considered set functions G(S) := max;cs d(i, S)
as greedily minimizable. In this paper, the concept of a minimum split function [2] is extended to
the case of monotone linkage functions. We have proven that the inclusion-minimal maximizers
of a minimum split function are monotone linkage clusters, all of which can be found with the
extended greedy procedure EGP. This allows us to claim that the minimum split functions M,
for monotone linkages d present yet another class of greedily maximizable functions, though the
greediness here is associated with the definition of M via d rather than with direct maximization
of My considered usually (as, for instance, in (5]). We have proven also that this class coincides
with the class of quasi-concave set functions.

Although the problem of maximizing quasi-concave set functions is exponentially hard when
they are oracle-defined [6], it can be resolved with the extended greedy procedure when they are
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defined in terms of a monotone linkage. Thus, the monotone linkage format may well serve as an
easy-to-interpret and easy-to-maximize input for dealing with quasi-concave set functions.

On the other hand, the monotone linkage concept may be used as a framework for developing
clustering techniques based on entity-to-set linkages rather than on conventional entity-to-entity
dissimilarity measures. The “unclusterable,” “noisy” entities frequently occurring in real-world
data can be treated explicitly in this framework.

The constructions described only involve ordering information in both the domain and range of
set/linkage functions, and also, they rely on the fact that every subset is uniquely decomposable
into its elements. Therefore, they can be extended to distributive lattice structures considering
the set of irreducible elements as I (see, for instance, [7] where relations between monotonicity
and quasi-~concavity on distributive lattices and semilattices have been studied).
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