
Incomplete classifications of a finite set of objects using Monotone Systems* 

Yu. M. Zaks and I. B. Muchnik UDC 519.237.8 
The problem of incomplete classification is solved using a monotone system of a special 
kind. A classification method based on identification of the minimal cores of the monotone 
system is proposed. Existence conditions of a complete classification are given. The method 
is compared with previously published methods. 

1. Introduction 

Automatic classification methods, in addition to looking for complete classifications (i.e., 

partitioning of the initial set of objects), when classes are nonintersecting and form a cover-

ing of the entire set, also consider classifications with intersecting classes, with fuzzy classes, 

with macrostructure, etc. [1-3]. An independent group comprises incomplete classification 

methods, which identify a special class of “atypical” (background, special, or intermediate) 

objects and then assign the rest of the objects to nonintersecting classes [4-6]. Incomplete 

classifications are constructed when it is desirable to form classes comprising “strongly sepa-

rated” subsets of objects, with all the background objects collected in a single class. This is 

archived either by two-step procedures, in which the first stage involving identification of the 

special objects is independent of the second stage involving classification proper, or by sin-

gle-stage processing in which the classification functional is defined on the set of two-level 

classifications, thus complicating the discrete optimization problem. Moreover, both cases 

require specifying in advance the number of classes and the cardinality of the set of special 

objects, which leads to multi-alternative computations. Finally, most of the known algorithms 

are crudely approximate. 

In this paper, the sought incomplete classification is implicitly described by a separate es-

timate for each identified class of nonspecial objects, and this estimate should be extremal 

and equal on all classes of the sought classification. The proposed approach requires mini-

mum prior information: we only need to know the measure of association of one object with 

a subset of objects. The number of classes and the number of objects identified, as special, is 

not fixed in advance. The proposed algorithm guarantees exact solution of the corresponding 

extremal problem. 
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2. Statement of the problem 

Consider a finite set W  of objects ( NW = ) and a function )H,i(π , which evaluates the 

association of the element Wi ∈  with the subset WH ⊆  and satisfies the monotonicity 

condition 

 )kH,i()H,i( \ππ ≤  Wi ∈∀ , WHk ⊆∈∀ , ki ≠ . (1) 

Introduce two set functions 

 )H,i(min)H(F
HWi

π 
\∈

=  (2) 

and 
 )H,i(max)H('F

Hi
π 

∈
= . (3) 

It is easy to show [7] that these functions satisfy the following conditions: 

a) quasiconcavity: WH,H ⊂∀ 21 , such that ∅≠∩ 21 HH , we have 

 ( ))H(F),H(Fmin)HH(F 2121  ≥∩ ; (4) 

b) quasiconvexity: WH,H ⊂∀ 21 , ∅≠1H , ∅≠2H , we have 

 ( ))H('F),H('Fmax)HH('F 2121  ≤∪ . (5) 

Using these conditions, we can easily show that the family of proper subsets H  of the set 

W  (augmented with the empty set, if necessary) satisfying the condition u)H(F ≥  1, is 

closed under the intersection (forms a lower semilattice of sets [8]), and the family of subsets 

satisfying the condition u)H('F ≥ , is closed under union (forms upper semilattice). Simi-

larly for the function )H,i(π  such that 

 )kH,i()H,i( \ππ ≥  Wi ∈∀ , WHk ⊆∈∀ , ki ≠ , (6) 

we obtain that the functions 

 )H,i(max)H(F
HWi

π 
\∈

=  (7) 

and 
 )H,i(min)H('F

Hi
π 

∈
=  (8) 

                                                           
1 Notification changed from the original C)H(F ≤  to u)H(F ≤ . Note by J.M. 
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generate, respectively, a lower for u)H(F ≤  and an upper u)H('F ≥  semilattice, be-

cause in this case we obviously have ( ))H(F),H(Fmax)HH(F 2121  ≤∩ , 

WH,H ⊂∀ 21  and ∅≠∩ 21 HH , and ( ))H('F),H('Fmin)HH('F 2121  ≥∪ , 

WH,H ⊂∀ 21  and ∅≠1H , ∅≠2H . 

Given the nature of the semilattices generated by )H(F  and )H('F , we call the triple 

F,,W π  an I-system and the triple 'F,,W π  a S-system, regardless of whether the func-

tion )H,i(π  satisfies condition (1) or the reverse condition. 

S-systems 2 were proposed by Mullat in [9] and have since been used in applications, 

which require identifying the subset of objects that have the strongest association in some 

sense [10]. S-systems were applied in [11] to construct a complete classification by multiply 

solving the problem. 

Unlike previous studies, our paper uses I-systems. 3 Similarly to the description of S-

system [9], we introduce the following definition. 

Definition. The cores 4 of the I-system F,,W π  are the proper subsets of W  on which 

)H(F  attains a maximum: *H  is a core if 

 )H(FmaxargH
H

WH

*   
∅≠

⊂
= . (9) 

We have noted above that the family of proper subsets of W  satisfying the conditions 

u)H(F ≥ , augmented with the empty set is necessary, is a lower semilattice. We see from 

the definition that a core is a particular case of such a family when )H(Fu *= . This means 

that the family of all cores is closed under intersection if the intersection of all the elements 

of the family is nonempty. If it is empty, then we augment it with the empty set, setting 

)H(F)(F *=∅ , where *H  is a core. 

                                                           
2 Such systems originally were called “monotonic” (not “monotone”). To call such systems “monotonic” is 

more suitable, because as it turns out later the term “Monotone System” is common notification for at least 
four different subjects under investigation in the scientific community. Note by J.M: 

3 We consider I-systems that satisfy condition (1). 
4 These cores in [9] vocabulary are kernels contrary to widely used core solution in N -persons coalitions 

games. Note by J.M. 
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Thus, the family 0 T  of cores of F,,W π  is a lower semilattice. Therefore, the set of 

minimal (by inclusion) nonempty cores of F,,W π  generates a classification of the ele-

ments of W  into nonintersecting classes (in general, this classification is incomplete). The 

substantive interpretation of the function )H,i(π  (the distance of the element HWi \∈  

from the set H ) and )H(F  (the measure of isolation of H ) suggests that the classes of this 

classification are in fact the sought “strongly separated” subsets of objects, while the ele-

ments that are not assigned to any of these subsets are the “atypical” objects that occupy an 

intermediate position between the separated classes. 

Our discussion suggests the following problem: design an algorithm to find the set of all 
minimal (by inclusion) cores of the system F,,W π . The solution of the problem is the 

subject of our paper. 

3. Construction of the determining 5 order of a monotone system 

Let P  be the set of all proper subsets of W . 

Definition. Quasicores of 1-st level are the elements *H  of the set 0 TP\  such that 

)H(FmaxargH~
H

  
 0TP\∈

=  (we denote this set by 1 T ); quasicores of k-th levels are obtained 

from the condition )H(FmaxargH~
k

iH

  
 
1−

=
∈

=

0i
\ TP !

, where i T  is the set of quasicores of i-th level, 

10 −≤≤ ki , and quasicores of 0-th zero level are cores. 

Let m  be the highest level of the quasicores of the system F,,W π . Then i 

m

i
TP

0=
= ! . Let 

j 

s

j
s TL

0=
= !

def
 ( ms ,0= ), and let su  be the value of F  on the quasicores of the s-th level. 

Clearly, mu...uu ≥≥≥ 10 . 

The set 0L , as we have noted above, may be regarded as a lower semilattice. In order to 

ensure that this property holds for any sL , we must define )H(F  on the empty set, since 

starting with some k̂  all the set sL  ( ks ˆ≥ ) contain pairwise nonintersecting elements. We 

have the following theorem. 

                                                           
5 Originally called “defining sequence”, might be a translation circumstance. Note by J.M. 
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Theorem 1. If we set u)(F =∅ , then for any s  ( ms ≤≤0 ), sL  is a lower semilattice. 

The proofs of all the theorems are collected in the Appendix. 

In what follows we always assume that )H(F  is defined on the empty set according to 

Theorem 1. 

Let sK  be the zero of the semilattice sL  (its least element: sKHH ⊇⇒∈ 0L ). Note that 

ss u)K(F ≥ . 

Theorem 2. The system of zeros of the semilattices sL  ( ms ,...,0= ), is a chain, i.e., 

mK...KK ⊇⊇⊇ 10 . 

Eliminating repeating elements from this chain, we obtain a maximum-length chain of 
strictly included elements 

tjjj 1
K...KK ⊃⊃⊃

0
. Clearly 00

KK =j  and ∅=
tj

K . The 

maximum chain has the following properties: 

 )K(F...)K(F)K(F
tjjj 1

>>>
0

; (10) 

 )K(F)H(FKHKH
dd1-d jjj: ≤⇒⊇⊃∀ , t,d 1= ; (11) 

 )K(F)H(FKHH
00 jj: ≤⇒⊃∀ . (12) 

Consider a fixed element Wi ∈ . Let { }HiH ∈∈= :PPi . Restrict the domain of defini-

tion of )H(F  to iP . Let i,F,,W π  denote the resulting monotone system. If ii ,..., rTT0  is 

the system of its quasicores, then we can easily show that i

def

i
j

s

j

 
s TL

0=
= !  ( rs ,0= ) are lower 

semilattices. Identify their zeros ii K...K r⊃⊃0  with the corresponding values of ii u,...,u r0  

and construct the maximum chain ii K...K
h0 jj ⊃⊃ . If sKi ∈  ( m,s 0= ), then obviously 

dd TTi = , dd uui = , sd ,0= . 

Let us now proceed to construct a determining order. Let iJ  be some order on W  such 

that i  is the first element in this order: N
i j,...,j,ijJ 21 == . It induces a sequence of sets 

from i
N

ii H,...,HH 1=:iP , where { }dd j,...,j,jH i
21= , N,1=d . 
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Definition. The order iJ  is called a determining order if the sequence of sets 
i
N

ii H,...,HH 1=  contains a subsequence iii ,..., pΓΓΓ 1= , {}ii =1Γ , ii ... pΓΓ ⊂⊂1 , 

such that 

 )(F...)(F ii
pΓΓ <<1 ; (13) 

 )(F)H,j( ii
dkk Γπ ≤+1  i

ddk ΓΓ \ij 11 ++ ∈∀ , 11 −= pd , ; (14) 

 )(F)H,j( ii
pkk Γπ ≤+1  i

pk Γ\Wj ∈∀ +1 . (15) 

Note that these inequalities are dual analogs of the inequalities for the S-system [12]. 

Algorithm 1 to Construct the Determining Order iJ . 

Step 1. ij =1 , { }11 jH i = , )H,j(minargj i

HWj i
12

1

π  
\∈

= . Set the threshold iH,j(u 121 π= ). 

Step k. The sequence kj,...,j1  and the set { }kk j,...,jH i
1=  have already been con-

structed. Find )H,j(minargj i

HWj i
kk   

k

π
\∈

+ =1 . If 11 −+ ≤ kkk u)H,j( iπ , then 1−= kk uu , 

else )H,j(u i
kkk 1+= π . For 1−< Nk  go to step 1+k , else end. 

Theorem 3. The sequence Nj,...,j1  constructed by Algorithm 1 defines the determining 

order iJ , and the subsequence 
p

j,...,j,jj kkk 21 2= , on which the value of the threshold u  

changes determines iΓ , where { }121 −=
hk

i
d j,...,j,jΓ , pd ,1= . 

A characteristic feature of this order is that it satisfies the condition 

 )H,j()H(F ii
kkk 1+= π , 11 −= N,k . (16) 

Theorem 4. The sequence iΓ  of any determining order coincides with the maximum 
chain of zeros i

j
i
j K...K

h
⊃⊃

0
 of semilattices i

j
i
j ,...,   

h
LL

0
 respectively, i.e., 

ii
j

ii
j K,...,K 10

ΓΓ ==
hp  ( 1−= ph ). 

The theorem asserts, in particular, that the order of the indices of the zeros of the corre-

sponding semilattices is the inverse of the order of the indices of the subsets i
kΓ . 

Corollary 1. If iJ1  and iJ 2  are two different determining orders, then the corresponding 

subsequences i
1Γ  and i

2Γ  coincide. 
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Corollary 2. i
pΓ  is the only minimal core of the system i,F,,W π . 

It easy to see that the sequence constructed by Algorithm 1 coincides with the sequence 

constructed by the well-known Spectrum algorithm [4] if )H,i(π  is used as the measure of 

association of the element HWi \∈  with the set H . Thus, Theorem 3 highlights certain 

extremal properties of sets in the sequence constructed by the Spectrum algorithm. Other ex-

tremal properties are noted in [13], where the Spectrum algorithm is used to find a classifica-

tion corresponding to the local optimum of the weighted-average variance functional. 

In the next section, the construction of this sequence is the basis for the general algorithm 

to find all the minimal cores of an I-system. 

4. Finding the minimal cores 

Let { }J=Ω  be the set of all orders J  on W , and let )H,i()H,J( JπΠ = , where 

P∈H , Ji  is the first element of the set HW \  on J . Then the following theorem holds. 

Theorem 5. If the order i
*J  for all { }N,i 1∈  satisfies condition (16), then iH k  ( 11 −∈ N,k ) 

taken from this order is a core of the system i,F,,W π  if and only if for all Ω∈J  and all 

iH P∈  we have the inequalities 

 )H,J()H,J()H,J( i
*

ii
*

i ΠΠΠ ≥≥ kk . (17) 

Remarks. 

1. If condition (17) holds for any P∈H , then iH k  is a core of the system F,,W π  (this 

is clear from the proof of the theorem). 

2. If *H  is the minimal core of the monotone system F,,W π , then for any *Hi ∈  Al-

gorithm 1 constructs an order i
*J  that satisfies (16) and such that for some 

{ }11 −∈ N,...,*k  we have *HH *
k

= . 

The algorithm to find all the minimal cores of F,,W π  will be constructed by the follow-

ing scheme: first for each of the systems i,F,,W π , N,...,i 1= , find a minimal core *
iH  
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using Algorithm 1. Then in this set of cores identify the sought set of minimal cores of the 
system F,,W π . WE now give a formal description of the algorithm. 

Algorithm 2. 

Step 1. For each N,...,i 1= , use Algorithm 1 to find i*
iH pΓ=  and the number )H(F *

i . 

Step 2. From the family { }*
N

* H,...,H1=H  separate the subfamily { }** H,...,H'
pdd1

=H  of 

subsets such that on each subset F  attains its maximum value over the elements 
of H . 

Step 3. Minimize 'H  by inclusion and retain only different elements, { }** G,...,G s1=*H . 

Theorem 6. The set of cores *H , generated by Algorithm 2 contains all the minimal cores 
of the monotone system F,,W π . 

Algorithm 2, in view of the similarity between Algorithm 1 and the Spectrum algorithm 

notes in Sec. 2, suggests the following stronger form of the algorithm to construct a complete 

classification minimizing the weighted-average variance [13]. For each N,...,i 1= , con-

structs the sequence iJ  until the first class is obtained, as described in [13]. From these N  

alternatives select the one for which the identified class has the least variance. Remove the 

chosen class from W . Repeat the procedure until W  has been exhausted. The algorithm is 
clearly independent of the choice of the first element 1i  (unlike the algorithm of [13]). 

5. Quasiflow monotone systems 

Consider a special class of monotone systems whose representatives are both I-systems and 
S-systems at the same time, i.e. the semilattices generated by their functions )H(F  are also 

lattices. This class was introduced in [7], where it is shown that all such systems are repre-

sentable in the form 6  

 jiHj
amin)H,i(   

∈
=π , (18) 

 jiHjHWi
aminmin)H(F    

∈∈
=

\
, (19) 

where jia   is the measure of association defined on the couples ( ) Wj,ij,i ∈ : . 
                                                           
6 Comparison of (1)-(2) with (18)-(19) shows that the definition is that of an I-system. The fact that this is an S-

system follows from the representation jiHWi
amin)H,j('   

\∈
=π , )H,j('min)H(F

Hj
π 

∈
=  and its 

comparison with (6) and (8). 
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The interpretation of )H(F  as the magnitude of the cut ( )HW,H \  on the graph defined 

on the vertex set W  with the matrix of arc length jiaA  =  accounts for the term “quasi-

flow” applied to these systems in [7]. Further analysis is restricted to a particular type of such 

systems, symmetric monotone quasiflow systems, when A  is a symmetric matrix. 

Thus, let [ ]E,WG =  be a graph on W  without loops and parallel edges, with a system of 

lengths defined on its set of edges E  by a symmetric matrix A ; )H(F  is the lengths of the 

minimal edge joining H  with HW \ . In this case, we obviously have 

)HW(F)H(F \= . Recall that the minimal tree of a graph is its spanning subtree with a 

minimal sum of edge lengths. 

Theorem 7. The values of )H(F  for all WH ⊂  are equal to the length of some edge of 

the minimal tree of the graph G . 

Note that the definition of a symmetric monotone quasiflow system does not require that 
the G  be a complete graph. It suffices to have a connected graph, setting ∞=jia   for 

( ) Ej,i ∉ . 

An edge of maximum length will be called a maximal edge. We thus obtain: 

Corollary. The value of )H(F  on a core of a monotone system is equal to the length of 

maximal edge in the minimal tree of the graph. 

Let T  be the minimal tree of the graph G  and 0"  the length of its maximal edges, 1"  the 

length of the maximal among the remaining edges, 7 and so on, m"  the length of the minimal 

edge of the tree T . Then by Theorem 7 the function )H(F  may take only ( )1+m  different 

values m""" ,...,, 10  and the sets kL  ( mk ,...,0= ) are determined from the relationship 

 { }kk "≥⊂= )H(FWHL . 

Clearly the sets kL  are Boolean lattices [8], because )HW(F)H(F \= , i.e., each ele-

ment of the lattice kL  has a complement. We know [8] that any element of a Boolean lattice 

                                                           
7 For any two minimal trees of a graph, there exists an isomorphism that preserves the lengths of the edges 

[14]. 
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has a unique irreducible representation in terms of ∨ -irreducible elements 8 and the set of 

∨ -irreducible elements coincides with the set of atoms of the Boolean lattice – nonempty 

elements that are minimal by inclusion. Thus, the minimal cores of a symmetric monotone 

quasiflow system play the role of generators, i.e., any core is the union of minimal cores. 

Theorem 8. The family of all atoms of the lattice kL  of a symmetric monotone quasiflow 

system coincides with the set of components of an arbitrary minimal tree of the graph G  ob-
tained when this tree is cut by all its edges, which are not shorter than k" . 

Corollary. The set of minimal cores of a symmetric monotone quasiflow system forms a 

complete partitioning of the set W . 

In order to find the family of atoms of the lattice kL  we need to construct the minimal tree 

on the graph G  and to cut it by all the edges, which are not shorter than k" . This procedure 

is identical to the well-known procedure of partitioning into components the α -similarity 
graph 9 [4] with k"=α  or to the correlation Pleiades method [4]. It is also identical to the 

Wroclaw taxonomy method [3] with a given number of classes kmm = , where ( )1−km  is 

the number of minimal tree edges not shorter than k" . More precisely, let kR  be the set of 

all possible partitions of W  into km  nonempty classes. Let "
SW  be the " -th class of some 

partition kR∈sR , ℒ )W( S
"  the length of the minimal tree of the subgraph "

SG  defined by 

the set of vertices "
SW . On kR  consider the functional 

 ∑
=

=
km

1"

)R(J s ℒ )W( S
" . (20) 

Theorem 9. The functional (20) attains its minimum on the family of atoms of the lattice 

kL . 

The family of atoms of the lattice kL  coincides also with the set of classes obtained by the 

“nearest neighbor” method [5] on the step km−W  with a given number of classes km , be-

cause the classes corresponding to the nearest neighbor method are obtained by adding edges 

from the minimal tree in the order of increasing lengths, i.e., the minimal-length tree com-

pletely characterizes the agglomeration of classes by the nearest neighbor method. 

                                                           
8 The element H  ( ∅≠H ) is called ∨ -irreducible if HHH =∪ 21  implies HH =1  or HH =2 . 
9 An α -similarity graph is a graph without edges that are not shorter that α . 
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APPENDIX 

Let us prove the quasiconcavity property (4). Indeed, )HH,i()HH(F *
2121 ∩=∩ π , 

where ( )21 HHWi* ∩∈ \ . If 1HWi* \∈ , then )H(F)H,i()HH,i( **
1121 ≥≥∩ ππ  

[from (1)]. Similarly, if 2HWi* \∈ , then )H(F)HH,i( *
221 ≥∩π . We have proved (4). 

The quasiconvexity property (5) is proved similarly. 

We will show that the family of subsets { }u)H(FWH ≥⊂= :H , augmented with the 

empty set if necessary, is the lower semilattice. Indeed, let 21 H,H  be such that u)H(F ≥1 , 

u)H(F ≥2 . If ∅≠∩ 21 HH , then u)HH(F ≥∩ 21  [from (4)], i.e., H∈∩ 21 HH . If 

∅=∩ 21 HH , then let u)(F ≥∅ . Thus H  is a lower semilattice. 

Proof of Theorem 1. Since k̂  is the minimal index for which k̂L contains nonintersecting 

sets, then for ki ˆ< , iL  is a lower semilattice: the elements of this family satisfy the condition 

iu)H(F ≥ , { } iL∉∅ . If ki ˆ≥ , then ki ˆuu ≤  and so iu)(F ≥∅  by construction; for 

∅≠H , iu)H(F ≥  from the definition of iL . ! 

Proof of Theorem 2. This follows from the inclusion of the semilattices 1+⊆ ss LL  

( 10 −= ms , ). 

Let us prove property (11) [properties (10) and (12) are obvious. Assume that there exists 
*H  such that 

dd jj KHK * ⊃⊃
−1

, but )K(F)H(F *
dj> . Let i  be the index such that 

iu)H(F * = , then ijd uu < . On the other hand, 
1−

<
dji uu , because 

1−
⊂

djKH * . Thus 

dd jij >>−1 . Then there exists iK  such that 
1−

⊃
djKK  and 

dji KK ⊃ , because 

)K(Fu)K(F
djii >≥ . A contradiction with the maximality of the chain. ! 

Proof of Theorem 3. This is obvious. 

Proof of the Theorem 4. It suffices to show that any element of the sequence iΓ  is a zero 
of some semilattice i

j
 L  and any zero i

jK  of the semilattice i
j
 L  coincides with some element 

from iΓ . 

1. We will show that i
dΓ  ( { } p d ,1∈ ) is a zero of the semilattice i

j
 L  defined by the condi-

tion i
ju)H(F ≥ , where )(Fu ii

j dΓ= , { } r ,j 0∈ . Consider iP∈H . Assume that 
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H ⊉ i
dΓ , i.e., ∅≠Hi \dΓ , and let sj  be the first element from Hi \dΓ  in the deter-

mining order iJ , i.e., HH ii ∩⊆− ds Γ1 , iH s⊈ Hi ∩dΓ . Then 

 
)(F)(F)H,j()H,j()H(F iii

ddsss

(d)                 (c)                     (b)                 (a)             

ΓΓππ ≤≤≤≤ −− 11
. 

  In this chain of inequalities, (a) holds by the definition of )H(F ; (b) follows from 

the monotonicity of )H,j(π ; (c) and (d) follow, respectively, from (14) and (13). 

Thus, if H  satisfies the condition i
ju)H(F ≥  (i.e., i

jL ∈H ), then iH dΓ⊇ . On the 

other hand, iL 
d j
i ∈Γ , and so i

dΓ  is a zero of the semilattice iL 
j . 

2. We will show that )(Fu ii
j pΓ≤  for any r,...,j 0= . Assume that this is not so. Then 

there is H  such that )(F)H(F i
pΓ> . If H ⊉ i

pΓ , then from the proof of part 1 it fol-

lows that )(F)H(F i
pΓ< . Let iH pΓ⊇  and let sj  be the first element of the set 

HW \  in the determining order iJ . Then 

   )(F)H,j()H,j()H(F ii
psss Γππ ≤≤≤ −1 . 

 This chain is similar to the chain in the proof of part 1, except the last inequality, which 
follows from (15). Thus, for any WH ⊂ , )(F)H(F i

pΓ≤ . Moreover, 

H∀ ⊉ )(F)H(F ii
pp : ΓΓ <  and )(F)H(FH ii

pp : ΓΓ ≤⊇∀ , i.e., ii K0=pΓ . 

Consider i
jK  ( { } r ,j 0∈ ) and let )(Fu)(F ii

j
i

dd ΓΓ ≤<−1 , ( pd ,1∈ ). We will show that 

in this case ii
jK dΓ⊃  and it therefore coincides with i

dΓ , because i
j

i  
d L∈Γ . Assume that 

this is not so, i.e., ∅≠i
j

i K\dΓ . Then from the proof of part 1 it follows that 
i
j

ii
j u)(F)K(F <≤ −1dΓ , a contradiction. ! 

Corollary 1 is obvious, Corollary 2 follows from the fact that iK0  is the unique minimal 

core of the system i,F,,W π . 

Proof of Theorem 5. Sufficiency. Let condition (17) hold, then ≤=
∉

)H,j(min)H(F
Hj

π  

).H,J()H,J( ii
*

i
* kΠΠ ≥≤  On the other hand, )H(F)H,J(min)H,J( ii

J

ii
* kkk  ==

∈
ΠΠ

Ω
. 

Thus, )H(F)H(F i ≥k  iP∈∀ H , i.e., iH k  is a core of the system i,F,,W π . 
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Necessity. Consider the couple ( )ii
* H,J k . By (16) it follows that == )H(F)H,J( iii

* kkΠ  

)H,J(min i

J k Π
Ω∈

= . Thus )H,J()H,J( ii
*

i
kk ΠΠ ≥ . 

Consider iP∈H , and let 1+dj  be the first element of the set HW \  in the order i
*J . Then 

iHH d⊇  and 

 
)H,J()H(F)H(F)H,j()H,j()H,J( ii

*
iiii

* kkdddd

(b)                                          (a)                                            

ΠππΠ =≤=≤= ++ 11
. 

In this chain, (a) follows from (1) and (b) from (9). ! 

Proof of Theorem 6. Let { }ti,...,i,iH 21=  be a minimal core, then it coincides with the 

minimal core of the system 1i,F,,W π  and it is therefore generated in the first step of Al-

gorithm 2. Then clearly 'H  is the set of cores of the system F,,W π  containing all the 

minimal cores, and these will be obtained in the third step. 

Proof of Theorem 7. Let T  be a minimal tree, ** ji
a)H(F = , ( )** j,ie = , but Te ∉ . 

Since H  and HW \  form a partition of the vertex set of the graph G , then there is an edge 

T'e ∈ , connecting H  and HW \ . From the definition of )H(F  it follows that 

)'e()e( "" ≤ , where )e("  is the length of the edge e . The edge e  together with the tree T  

form a cycle that contains 'e . Thus e'eT ∪\  is also a tree whose length is 

)'e()e()T( """ −+  where )T("  is the length of the tree T . From the minimality of T  it 

follows that )'e()e( "" = . 

Proof of Theorem 8. We will first show that the assertion of the theorem is well-defined, 

i.e., it is independent of the particular choice of minimal tree. 

LEMMA. Let 1T  and 2T  be two minimal trees and { }11
11 pR,...,R=R , { }22

12 sR,...,R=R  two 

partitions obtained when trees 1T  and 2T  are cut, respectively, by all the edges that are not 

shorter than k" . Then 1R  and 2R  coincide. 

Proof of Lemma. Assume that this is not so. Then there is a component of the tree 1T  

(or 2T ) that intersects with two components of the tree 2T  ( 1T ) so that these two components 

are connected by the edge e  of the tree 1T  ( 2T ), and k"" <)e( . For definiteness, let 1Te ∈ . 

Adjoining e  to 2T , we obtain a cycle that contains at least one edge 2T'e ∈  joining the com-

ponents of 2T , and therefore its length is k"" ≥)'e( . Then we can reduce the length of the 

tree 2T , by replacing 'e  by e . But this is a contradiction with the minimality of 2T . 
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Let us now prove the theorem. Let T  contain ( )1−t  edges of length k"" ≥  and let 

{ }tR,...,R1=R  be the partition obtained when T  is cut by these edges. From the proof of 

Theorem 7 it follows that k"≥)R(F i  ( )t,...,i 1= , i.e., iR  is an element of the lattice kL . 

We will show that iR  is an atom of the lattice kL . Assume that contrary, i.e., there exists an 

element kL∈G , ∅≠G , such that iRG ⊂ . But )G(F  is not greater than the length of the 

edge of the tree T  joining G  with GRi \ , i.e., k"<)G(F , a contradiction. Thus, iR  is an 

atom of the lattice kL . 

Other atoms of the lattice kL  that are not components of the partition obviously do not 

exist. This follows directly from the fact that the components iR  ( )t,...,i 1=  form a complete 

partition of the set W . ! 

Proof of Theorem 9. From the graph G  and the partition kP∈R  construct the graph 

[ ]'E,RGR =  whose vertices are the partition classes and the edges are the shortest edges of 

the graph G  joining a given pair of classes. The minimal tree RT  of the graph RG  is termed 

the minimal tree of the partition R , )T( R"  is the length of the tree RT . Let "
sT  be the mini-

mal tree of the subgraph "
sG  of the graph G . Then !

"

"
k

s

m

1
s

=
∪ RTT is a tree of the graph G  and 

therefore )T()T()R(J R "" ≥+
ss , where )T("  is the length of a minimal tree of the graph 

G . Thus, the minimum of the criterion )R(J  is attained for maximum )T( R" . We will 

show that the maximum value of )T( R"  is attained on the family of atoms of the lattice kL . 

To this end, we need the following lemma. 

LEMMA. For any minimal tree RT  of the partition R  there exists a minimal tree T  of the 

graph G  such that all the edges of RT  are edges of T . 

Proof of Lemma. Assume the contrary: there exists a partition R  and the tree RT  such that 

for any minimal tree T  of the graph G  there is an edge of RT  that does not belong to T . 

Then consider the tree T  that has the maximal intersections with RT . Let RTe ∈ , Te ∉ , 

( )** j,ie = . Then there is a path in G  connecting *i  and *j , and all the edges of this path 

are not longer than )e("  by minimality of .T  On the other hand, there exists an edge T'e ∈  
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of this path which joins two components of the tree RT  obtained by cutting the edge e , and 

RT'e ∉ . By minimality of RT , )e()'e( "" ≥  and therefore )e()'e( "" = . Then replacing 

the edge 'e  with e  in T , we obtain the minimal tree 'T  of the graph G , which has the larg-

est number of identical edges with RT . A contradiction. ! 

The lemma implies that the maximum value of )T( R" , ( )kR∈R  is equal to the sum of the 

1−km  longest edges of the minimal tree of the graph G , i.e., the sum of lengths of all the 

edges of the minimal tree which are not shorter than k" . Thus, the maximum of )T( R"  and 

the minimum of )R(J  are attained on the family of atoms of the lattice kL . ! 
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