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Abstract. Assume that a dissimilarity measure between elements and subsets of 
the set being clustered is given. We define the transformation of the set of subsets 
under which each subset is transformed into the set of all elements whose dissimi-
larity to its is not greater than a given threshold. Then the cluster is defined as fixed 
point of this transformation. Three well-known clustering strategies are considered 
from this point of view: hierarchical clustering, graph-theoretic methods, and con-
ceptual clustering. For hierarchical clustering generalizations are obtained that
allow for overlapping clusters and/or clusters not forming a cover. Three proper-
ties of dissimilarity are introduced which guarantee the existence of fixed points 
for each threshold. We develop the relation to the theory of quasi-concave set func-
tions, to help give an additional interpretation of clusters. 
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Conceptual clustering; Overlapping clusters. 

 
 

1. Introduction 

A variety of clustering methods have already been developed, and most of them rely 

on a specific corresponding concept of cluster. These concepts are introduced in different 

terms, so that it is difficult to compare them with one another. Moreover, sometimes these 

concepts are given implicitly, particularly in algorithmic form. We suppose that such a 

situation reflects the real variety in humans’ concepts of similarity, compactness, etc. 

Nevertheless we believe that a general point of view is highly desirable. It could produce 

the terminology to choose the appropriate clustering method. 
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In this paper we try to advance in this direction. Three well-known clustering strate-

gies are studied. These are hierarchical clustering (Jardine and Sibson 1971; Sneath and 

Sokal 1973), graph-theoretic methods (Hubert 1974; Matula 1977) and conceptual clus-

tering (Michalski and Stepp 1982, 1983). We define clusters as fixed points of an appro-

priate transformation of the set of subsets and apply this definition to all three clustering 

strategies studied. 

The definition of cluster proposed here is formulated according to a dissimilarity 

measure between elements and subsets of the set being clustered. We refer to it as 

an “element-set” type dissimilarity measure (ESD). Measures of dissimilarity between 

elements are central in clustering, and measures between subsets are sometimes used as 

well, as in hierarchical clustering. The type of measure under consideration here has not 

yet been studied systematically, but it has found a number of applications. Recall, foe ex-

ample, a distance between an element and the (variously defined) centroid of cluster, ex-

ploited in ISODATA (Ball and Hall 1967) and a number of its followers. It plays the role 

of the “element-set” type measure, through it has the form of distance between two 

points. 

A number of procedures for generation of ESD from more commonly used type of 

data has been proposed by Kuznetsov, Muchnik, Hencey, and Tchkuasely (1984) and by 

Kuznetsov, Muchnik, and Shvartser (1985). ESD can be generated from a dissimilarity 

matrix with the help of such simple operations as minimum, maximum, summation, etc. 

The multiple correlation coefficient provides an example of “element-set” type of similar-

ity measure on the set of variables, which cannot be calculated from matrix of “element-

element” type (one-mode, two-way, in the terminology of Tucker, 1964). It can be easily 

transformed into dissimilarity measure. There are some other examples of ESD’s in the 

present paper. 

A number of methods of data analysis based on ESD have been proposed by Mullat 

(1976, 1977); Kuznetsov et al. (1984); Kuznetsov, Muchnik and Shvartser (1985); 

Muchnik, Chkuaseli and Shvartser (1986); Zaks and Muchnik (1989), in particular with 

monotone ESD (see below) and with passing relevance to clustering. However, we are 

presently concentrating on the specific concept of a cluster. 
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Given a finite set U , let an ESD be defined as real-valued function )A,x( , where 

Ux , UA . A subset UA  will be called a -t stable set, or a -t cluster, where t  is a 

real value, iff the following conditions hold: 

 t)A,x(   for all Ax , (1.1a) 

 t)A,x(   for all AUx  , (1.1b) 

(where BA  means cBA ). Our first condition expresses the cluster’s property of be-

ing compact while the second one expresses its property of being isolated. This definition 

seems rather simple and natural. Consider now a transformation of the set of all subsets of 

U  defined as follows: 

  t)A,x(:Ux)A(Vt   . (1.2) 

This transformation can be interpreted as mapping a subset UA  into the set of all ele-

ments similar to A  in the sense of ESD. The set A  is called a fixed point of the transfor-

mation tV  iff A)A(Vt  . Note now that the set is a -t cluster iff it is a fixed point of the 

mapping tV . Throughout this paper, we use the terms “ -t cluster,” -t stable  set,” 

“fixed point” interchangeably. 

Mullat (1981) was the first to propose the fixed points transformations, similar to 

(1.2) in the continuous case, as a formal explication for the concept of the “area of con-

densation” of probability density. Transformation (1.2) was studied by Genkin, Zaks, and 

Muchnik (1988a, 1988b). In this paper we present the relevant results of these papers and 

continue the developments. 

The first theoretical problem of the fixed points approach is the existence of 

clusters-t  Moreover, the definition of a cluster-t  A  allows A  to be either the empty set 

or the whole of U . Thus, the existence of non-trivial clusters-t  is also of interest. We 

state some sufficient conditions for ESD to have a -t cluster for each t  and outline the 

conditions to have a non-trivial -t cluster where possible. 
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The fixed points approach concentrates on the properties of a particular cluster, not a 

partition or of some other kind of clustering as a whole. But the properties of the set of  

all -t clusters are of considerable importance. It is usually claimed they should form a 

partition. Sometimes-weaker claims are practical: to form a cover of U  or to be mutually 

disjoint. We suppose it is reasonable to consider a still weaker claim: the -t clusters 

should not be subsets of one another. For each of these properties, we formulate condi-

tions for ESD, which guarantee the properties to be true. 

Another important problem is how -t clusters change when t  changes. The growth of 

-t clusters when t  becomes larger seems most sensible. We define a type of ESD such 

that each -t cluster has a superset -'t cluster for each 't , where t't  . When -t clusters 

form a cover of U  for each t , it corresponds to well-known dendrogram representation 

of hierarchical clustering. 

Our paper contains six sections and a summary. Sections 2 and 3 are devoted to some 

theoretical aspects of -t clusters. Section 2 considers the problem of their existence. In 

section 3, monotone ESD’s are studied. An ESD is monotone if it increases (or decreases) 

when its set-valued argument becomes larger. Such ESD’s, together with related quasi-

concave set functions, form a subject of monotone systems theory (Mullat 1976, 1977; 

Kuznetsov, Muchnik, and Shvartser 1985). We study -t clusters in the framework of this 

theory, which enables us to obtain a useful additional interpretation of -t clusters. 

In the next three sections, different cluster concepts are studied using the fixed points 

approach. In section 4, we study hierarchical clusters, which are usually presented in the 

form of dendrogram. Generalization of the dendrogram concept is proposed, permitting 

overlapping clusters and/or clusters not forming a cover, at each level of hierarchy. Nec-

essary and sufficient conditions for the clusters to be disjoint as well a to form a cover are 

formulated. 

Section 5 considers the graph-theoretical approach to clustering. Several clustering 

methods have been thus formulated (Hubert 1974; Matula 1977). We show that these 

methods may be represented in a -t cluster framework. Some of their properties are 

shown to be implied to -t cluster theory. 
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In section 6, the concept of a -t stable set is applied to conceptual clustering. There 

arises a problem which can be formulated as follows: given a family of subsets of a finite 

set generated under conceptual criteria, find a subfamily which will be as proximate as 

possible to being a partition. The proximity mentioned can be measured in different ways. 

We propose an objective function, the extremum of which can be interpreted as a -t sta-

ble set. 

2. The Existence of t-clusters 

The problem of the existence of -t clusters has not been completely solved yet. We 

only have some sufficient conditions for ESD which guarantee the existence of -t clusters 

for any t . In this section, we formulate these conditions and consider their basic implica-

tions. 

First we need some definitions. An ESD   is called non-decreasing (or non-

increasing), iff UBA   implies: 

 )B,x()A,x(    (or )B,x()A,x(   ) for all Ux . 

ESD is called point-non-decreasing (or point-non-increasing), iff the following holds: 

 )xA,x()xA,x(    (or )xA,x()xA,x(   ) 
 for all Ux , UA . 

(For brevity we write xA  and xA  instead of  xA  and  xA\  respectively). 

An ESD which is both point-non-decreasing and point-non-increasing is called 

point-independent. Such ESD’s are usually used to extend the functions, which are de-

termined only for Ax  or only for AUx \ . 

Now we are prepared to consider the following three existence conditions: non-

increasing, intergability, ultrametricity. 
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A. Non-increasing condition 

Note that for non-increasing ESD, the transformation in (1.2) is isotone, i.e., if 

UBA  , then )B(V)A(V tt   for each t . A partially ordered set is called a complete 

lattice if for each subset it possesses a greatest lower bound and a least upper bound 

(Birkhoff 1967, Ch.1, §4). 

Proposition 2.1. For non-increasing ESD a -t cluster exists for each t . 

Proof. Immediately follows from the Tarski theorem (see Birkhoff 1967, Ch.5, §3): an 

isotone transformation of a complete lattice has a fixed point. 

Proposition 2.2. (Genkin, Zaks, and Muchnik 1988b). The set of -t clusters of a non-

increasing ESD for a given t  forms a lattice. 

Proof. The fixed point terminology is used here for convenience. If 1A , 2A  are fixed 

points of an isotone V  and 21 AAA  , then we have: ii A)A(V)A(V  , 21,i  . 

Thus A)A(V  , )A(V))A(V(V  , etc. As U  is finite, this sequence converges to some 

fixed point B , and AB  . We shall prove, that  21 A,AB  sup . Indeed, let C  be a 

fixed point and AC  . Then C)C(V)A(V  , C))A(V(V  , etc., and at some itera-

tion we obtain CB  . The existence of infimum is proved in the same way.  

Proposition 2.3. Let A  be a -t cluster of a non-increasing ESD, and "tt't  . Then 

there exists a -'t cluster 'A  and a -"t cluster "A  with the property: "AA'A  . 

Proof. For each Ax  we have: "tt)A,x(  . If V  is a transformation defined by 

(1.2) with "t , then A)A(V  . Consider a sequence ,...A,A,AA 210  , where 

)A(VA ii 1 , 0i . As V  is isotone, we have ii AA 1  for all 0i . As U  is finite, the 

sequence converges to the fixed point A"A  . By analogy, consider the decreasing se-

quence of sets to prove the existence of 'A .  

The empty set is a -t cluster for all t  such that ),x('tt
Ux




 min . The set U  is a 

-t cluster for all t  such that )U,x("tt
Ux
 max


 . For each t  such that "tt't  , a non-

trivial -t cluster exists. 
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For example consider ESD: 

 yx
Ay

d)A,x(   min


 , xxd),x(   , 

where yxd  is a dissimilarity measure, Uy,x  , UA . Assume as usual xyyx dd     and 

yxzz dd     for all Uz,y,x  . This ESD is non-increasing by definition. To interpret 

-t clusters, consider a threshold graph of level t :  tt E,UG  , 

     :  td,Uy,xy,xE yxt  . Then the minimal nonempty -t clusters turn to be exactly 

all components of this graph. We show in section 5 that they define the single-linkage 

clustering method. Moreover, every -t cluster is the union of some of these components 

and vice versa. To obtain another example, assume U  is the set of variables of a data ma-

trix. Consider a regression problem with x as independent variable, and variables from A  

except x  - as the independent variables. Then the ESD 21 R)A,x(   is non-

increasing. In section 5, we consider one more example of non-increasing ESD, which 

helps define the weak -k linkage clustering method. 

B. Integrability 

Given a set function )A(f , UA , define an ESD   with the eqality: 

 )xA(f)xA(f)A,x(  . (2.1) 

It is point-independent by definition. An ESD, which satisfies (2.1), with some appropri-

ate set function f , is called integrable. 

Proposition 2.4. If an ESD is integrable, then there exists a -t cluster for each t . 

Proof. Let   satisfy (2.1) with the set function f . For 0t  one may rewrite the defini-

tion of -t cluster (1.1a,b) as follows: 

 )xA(f)A(f   for all Ax , 

 )xA(f)A(f   for all AUx \ . 

As U  is finite, there exists a subset UA , which minimizes f , thus satisfying the first 

inequality. If the second inequality is not satisfied for some x , then )A(f)xA(f  . 

Then consider xA , and so on, until both inequalities are satisfied. For 0t  consider 

an ESD '  defines as: t)A,x()A,x('  . It is clearly integrable with 

At)A(f)A('f   (where     denotes cardinality); consequently it possesses a 

-0 cluster, which is obviously a -t cluster of  .  

We consider an example of integrable function in Section 6. 
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C. Ultrametricity 

ESD is called ultrametric iff it satisfies: 

  )A,y(),A,x()yA,x(   max   (2.3) 

 for all Ax , Uy , UA . 

The term is chosen because (2.3) resembles the ultrametric inequality, which is central to 

hierarchical clustering. An ultrametric dissimilarity measure generates a dendrogram. In 

section 4, we shall see that an ultrametric ESD generates a generalized dendrogram. Note 

that a non-increasing ESD is certainly ultrametric. Thus, an ESD, which is ultrametric 

and point-non-increasing, may be called weak decreasing. 

Proposition 2.5. Let )A,x(  be a weak decreasing ESD. Then: 

(i) if t)A,x(   for all Ax , then there exists a -t cluster AB  ; 

(ii) if 1A  is -1t cluster and 12 tt  , then there exists a -2t cluster 2A  such that 

12 AA  ; 
(iii) there exists a -t cluster for any t . 

Proof. To prove (i) find AUy \  such that t)A,y(  . If there is no such y , then A  

itself is a -t cluster. If there is, then we infer that t)yA,y(  , since   is 

point-non-increasing, and t)yA,y(   for all Ax , since   is ultrametric. Thus 

yA'A   satisfies the condition of item (i). The approach taken for A  works for 'A  as 

well, and so on. As U  is finite, at some iteration, a -t cluster will be obtained. 

To prove (ii), we note that because of the non-increasing property, 211 tt)A,x(   

for all 1Ax . Then (i) provides the poof. 

Finally, we prove (iii). If   t)x,x(   for some x , then by (i) there exists a -t cluster 

A  with  x A . Otherwise the empty set is a -t cluster.  

If there exists an element Ux  such that   )U,x(x,x(   , then a non-trivial 

-t cluster exists, where  )x,x(t  . Indeed, according to Proposition 2.5i, there exists a 

-t cluster A  such that Ax , and obviously A  is not equal to U . 

The above results are certainly true for non-increasing ESD also, but here -t clusters 

do not necessarily form a lattice. 
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As an example consider ESD defined by the formula 

 yx
xAy
d)A,x(   max


 , 

where yxd   is again a dissimilarity measure. It is obviously non-decreasing and point-

independent. Let us show that it is also ultrametric. Indeed, for Ax : 

    yxxz
xAz

zx
xyAz

d),A,x(maxd,dd)yA,x(   yx     max max  max   


. 

To prove the statement we note that: 

 )A,y(dmaxdd zy
yAz

xyyx 
     . 

Some more examples of ultrametric ESD’s are considered in Section 5, where they help 

define the well-known strong -k linkage, -k overlap and -k clique clustering methods 

(Matula 1977). 

3. Non-Decreasing ESD’s and Quasi-Concave Set Functions 

Monotone functions )A,x( , where Ux , UA , were studied by Mullat 

(1976,1977) and Kuznetsov, Muchnik, and Shvartser (1985). Their relation to quasi-

concave set functions was developed there, forming the subject of so-called monotone 

system theory. We first review the main concepts of this theory, assuming the function   

is ESD. 

Given a non-decreasing ESD  , define a set function F : 

 )A,x()A(F
Ax
 min


 , (3.1) 

where UA , A . This function proves to be quasi-concave, i.e., for all A , B  the 

inequality holds: 

  )B(F),A(Fmin)BA(F   . (3.2) 

A subset of U  that maximizes F  is called a core. Because of quasi-concavity, there ex-

ists a greatest core  , which is the union of all cores. Moreover, a subset ' , which 



10  A.V. Genkin and I.B. Muchnik 
 

contains all subsets A  satisfying )'(F)A(F  , is called a greatest quasi-core. All 

greatest quasi-cores constitute a sequence p,...,,  21  with the following properties: 

 p...   21 , 

 )(F)(F ii 1  , p,...,i 2 . 

An algorithm has been developed which produces a sequence of greatest quasi-cores, 

given a monotone function  . It requires )U(O
2

  evaluations of function  . Note that 

F  in (3.1) depends only on the values of  , where Ax . So in this section we usually 

assume ESD to be point-independent. 

Monotone systems have different applications in data analysis (Kuznetsov et al. 

1984;Kuznetsov, Muchnik, and Shvartser 1985; Zaks and Muchnik 1989). The concept 

similar to a -t cluster for the continuos case has been formulated by Mullat (1981). 

-t clusters for monotone ESD’s were studied by Genkin, Zaks and Muchnik (1988a). 

Here we present the main results of the latter paper and then proceed with the new work. 

As can be seen from (3.1), there exists numerous ESD’s producing the same quasi-

concave set function. The question arises: are the -t clusters of such ESD’s identical? Or 

in other words, can the concept of -t cluster be formulated using these functions, without 

reference to ESD? As we shall see, the general answer is negative, but F  imposes sub-

stantial limitations upon -t clusters. 

For non-decreasing ESD, -t clusters may or may not exist, but if they do, some of 

their properties can be observed. 

Proposition 3.1. If iA  are -it clusters of non-decreasing ESD  , 21,i  , and 21 AA  , 

then 21 tt  . 

Proof. Let 21 AAx \ . Then 11 t)A,x(  , 22 t)A,x(  . But )A,x()A,x( 21   , and 

we obtain 21 tt  .  

Corollary. -t clusters of non-decreasing ESD for given t  are not subsets of one another. 
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Equality (3.1) defines a mapping from the class defines a mapping from the class   

of non-decreasing ESD’s to the class   of set functions. Now we define mapping from 

  to   following Malishevsky (1986): 

    :  xAXx)X(Fmax)A,x(  . (3.3) 

By definition, the resulting   is point-independent and non-decreasing. Soon we shall 

see that it is also ultrametric. 

Lemma. If   is a non-decreasing ultrametric ESD and )A,y()A,x(   , Ay,x  , 

UA , then )yA,x()A,x(  . 

Proof. Rewrite   )yyA,x()A,x(  . Because of ultrametricity, either 

  )yA,x()yyA,x(   ,   )A,y()yA,y()yyA,x(   . The latter ine-

quality contradicts the condition of the Lemma, therefore the former one, together with 

the non-decreasing property gives the proof.  

Proposition 3.2. The point-independent non-decreasing ESD   satisfies (3.3) with some 

appropriate set function F  iff it is ultrametric. 

Proof. Let (3.3.) be true and Ax , AUy  . If )A,x()yA,x(    then the ul-

trametric inequality is satified. Otherwise )A,x()yA,x(   , and there exists 

yAX   such that )X(F)yA,x(  . Then we have 

 )A,y()yA,y()X,y()X(F)yA,x(   . 

Now, let   be ultrametric and )A(F  be defined by (3.1). Given x  and A , 

where UAx  , there exists a greatest maximum of F  in the right side of (3.3) 

because of quasi-concavity. Denote it by B . By non-decreasing property, 

)B(F)B,x()A,x(  . Since B  is the greatest maximum of F , )A(F)B(F  . 

Thus, we infer: )A(F)A,x(  . Now consider the sequence  nA,...,A,AA 10 , 

where iii yAA 1 , )A(F)A,y( iii  , 10  n,...,i . Let kA  be the first member of 

this sequence with Byk  . Then kAB   and )A(F)A,y()B,y()B(F kkkk   . 
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Inequality would contradict the definition of B ; thus, )A(F)B(F k  and kAB  . By 

the Lemma, )A,x()A,x( ii 1   for 10  k,...,i . Thus, we obtain )A,x()B,x(   . 

Suppose now that )B,x()B(F  . Then find r  such that xyr  . 

By Lemma, )A,x()A,x( ii 1   for 1 r,...,ki , and we obtain 

)B(F)B,x()A,x()A(F rr   , which contradicts B ’s being a maximum. Thus, 

)B,x()B(F  . But )B,x()B(F   by definition of F  in (3.1), and we obtain 

)A,x()B,x()B(F   .  

Ultrametric ESD’s play an important role in the monotone system theory, as follow-

ing proposition demonstrates. 

Proposition 3.3. Consider a class of all non-decreasing point-inderpendent ESD’s satis-

fying (3.1) with the given quasi-concave set function. There exists a unique minimal ESD, 

which is ultrametric and given by (3.3). 

Sketch of proof. Mapping defined by the expressions in (3.1) and (3.3) form a Galois cor-

respondence (Birkhoff 1967, Ch 5, §8) between the class   and  . The images of the 

first mapping prove to be exactly all quasi-concave set functions. The images of the sec-

ond mapping prove to be all ultrametric point-independent non-decreasing ESD’s.  

Now we are prepared to describe -t clusters using set functions. We call subset A  the 

least quasi-core of level t  of the quasi-concave set function F , if t)A(F  , and it con-

tains no proper subset with such a property. 

Proposition 3.4. Let F  and   be respectively a quasi-concave set function and a non-

decreasing ESD, satisfying (3.1). Let kG,...,G1  be the least quasi-cores of level t . Then: 

(i) If a -t cluster exists, it contains none of iG , k,...,i 1 ; 

(ii) If   is ultrametric and point-independent, then -t clusters are exactly all 
maximal subsets of U , containing none of iG , k,...,i 1 . 

Proof. We prove item (ii) first. Proposition 3.2 allows   to be represented by (3.3), and 

we rewrite the definition of a -t cluster in (1.1a,b) as follows: 
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   tAXx)X(F    : max  for all Ax , 

   tyAXy)X(F    : max  for all AUy \ , 

or equivalently 

 for all t)X(FAX   : , 

 for all AUy \  there exists yAX  , such that t)X(F  . 

In other words, no least quasi-core is contained in A , but at least one of them is con-

tained in each superset of A . 

To prove item (i), assume 0  is defined by (3.3) with F . According to Proposition 

3.3, 0  is ultrametric and point-independent, and  0 . If A  is a -t cluster of  , then 

t)A,x()A,x(  0  for all Ax . By Proposition 2.5, 0  possesses a -t cluster B  

such that AB  . As we have just seen, none of iG , k,...,i 1 , is contained in B ; thus 

none is contained in A .  

This proposition has a clear interpretation in cluster terms. A large value of )A(F  

shows that each element of A  is dissimilar to A , see 3.1, so we may interpret A  as a 

sparse set, and a -t cluster is a set countering no sparse subset. 

With the help of the above Lemma, we obtain one more proposition that is important 

for the monotone system theory. 

Proposition 3.5. Let   be an ultrametric non-decreasing ESD. Let p,...,1  be the se-

quence of greatest quasi-cores of the corresponding quasi-concave set function F , and 

1p . Then: 

(i) ),x()U,x( i   for all ix  , p,...,i 1 ; 

(ii) )(F),x( ii    for all 1 iix  \ , p,...,i 1 . 

Proof. Consider the sequence  nA,...,A,UA 10  , where jjj yAA 1 , 

)A(F)A,y( jjj  , 10  n,...,j . Given i , let k  be the smallest number satisfying: 

iky  . Then ki A  and 

 )A(F)A,y(),y()(F kkkiki   . 
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Inequality would disallow i  as being the greatest quasi-core, thus, )A(F)(F ki   and 

ki A . By Lemma, )A,x()A,x( jj 1   for 10  k,...,j  for each ix  , and we 

obtain (i). 

To prove (ii), assume ix  , )(F),x( ii   , and ryx   for some r . Then by 

Lemma, )A,x()A,x( jj 1   for 1 r,...,kj . Thus 

 )(F),x()A,x()A(F iirr   , 

and we conclude that rA  is contained in some greatest quasi-core m  with im  .  

It follows immediately from the above proposition that in the ultrametric case, it takes 

only   U  calculations of   to find a sequence of greatest quasi-cores. Indeed )U,x(  

for all Ux  contains full information. 

For example consider -t clusters of ESD   introduced in Section 2. Each pair y,x  

such that td yx  , constitutes a least quasi-core. Then the set is a -t cluster iff it is a 

clique of the threshold graph tG . In other words, the -t cluster is the maximal subset of 

U , where every two elements x  and y  satisfy the condition td yx  . 

4. Hierarchical Clustering and -t clusters 

The results of hierarchical clustering are often presented in the form a dendrogram, 

which is a sequence of increasingly refined partitions together with corresponding values 

of a dissimilarity measure (Jardine and Sibson 1971; Sneath and Sokal 1973). We review 

the necessary terms and then consider a more general concept. 

A dendrogram is completely defined by an ultrametric dissimilarity measure. Given a 

set U  of objects being clustered, a dissimilarity measure yxd   is called an ultrametric if 

the following conditions are satisfied for all Uz,y,x  : 

U1. 0yxd  , 0xd x , 

U2. xyyx dd    , 

U3.  zyyxzy d,dmaxd      . 
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Given an ultrametric dissimilarity measure, clusters of level t  for each 0t  are defined 

as subsets UA , satisfying: 

 td yx   for all Ay,x   (4.1a) 

 td yx   for all Ax , AUy \ . (4.1b) 

The set of clusters for any given t  forms a partition of U . For each cluster A , define 

)A(t  as the minimal value of t  such that A  is the cluster of level t . When displaying a 

dendrogram, usually the value )A(t  is displayed together with each A . A dendrogram 

possesses the following properties: 

D1. For any given t , clusters exist. 

D2. For any given t , clusters are mutually disjoint. 

D3. For any given 0t , clusters form a cover of U , i.e., every object belongs to 
some cluster. 

D4. If 1A  is a cluster of level 1t , and 12 tt  , then there exists a cluster 2A  of level 

2t , such that 12 AA  . 

Property D1 is obviously the implication of D3, but we outline it for convenience. 

Properties D2 and D3 together imply that clusters form a partition of U , i.e., each object 

belongs to exactly one cluster. Now consider another property: 

GD. For any given t , clusters are not subsets of one another. 

Obviously, D2 implies GD, and D1-D4 together imply the set of properties D1, GD and 

D4. That is the reason we call a set of subsets with the corresponding values of t , satisfy-

ing D1, GD and D4, a generalized dendrogram. 

Proposition 4.1. Given a non-decreasing weak decreasing ESD, its -t clusters together 

with their t  values form a generalized dendrogram. 

Proof. D1 and D4 are true because of Proposition 2.5. GD is true because of the Corollary 

of Proposition 3.1.  

A generalization is made in two directions. First, -t clusters for a given t  may overlap 

when D2 is not true. Second, they may not form a cover of U  when D3 is not true; i.e., 
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there may be an object belonging to none of -t clusters. Here we formulate the necessary 

and sufficient conditions for -t clusters to be disjoint for each t , as well as the necessary 

and sufficient conditions for them to form a cover of U  for each t  large enough. 

Proposition 4.2. Given a non-decreasing weak decreasing ESD  , its -t clusters form a 

cover of the set U  for all st   iff   s)x,x(   for all Ux . 

Proof. If   s)x,x(  , then for any st   there exists a -t clusters containing  x , be-

cause of Proposition 2.5. Let there now be   s)x,x(   for some Ux . Then by the 

non-decreasing property we have s)A,x(   for each A  such that Ax . Thus, x  can-

not belong to any -s cluster.  

It is reasonable to assume the ESD to be non-negative. Then we should apply the 

above proposition with 0s  to obtain D3. 

Proposition 4.3. The condition 

   







)a,y(),y,x,x()A,x(

AyAy
  max   minmax   (4.2) 

 for all UA , A , AUx \ , 

is necessary and sufficient for -t clusters of non-decreasing, weak decreasing ESD to be 

disjoint for each t . 

Proof. To prove sufficiency, assume (4.2) is true, but that there exist overlapping -t clus-

ters A  and B . Let BAy  , ABx \ . Then   t)B,x()y,x,x(   , and by applying 

(4.2) we conclude that t)A,x(  , which contradicts A ’s being -t cluster. 

To prove necessity, assume (4.2) is not true, and there exist UA , Ay , AUx \ , 

where the following holds: 

   t)y,x,x(  , t)A,z(
Az




 max , t)A,x(  . 

By Proposition 2.5, there exists a -t cluster 'A  such that   t)A,y()y,y(   and 

    t)y,x,x()y,x(  . Then by ultrametricity we obtain: 

        t)y,x(),y,y()y,x,y(     max . 
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Applying Proposition 2.5, we conclude that there exists a -t cluster B  with   By,x  . 

But 'AUx \ , because t)A,x()'A,x(  . Thus, we obtain overlapping -t clusters 

'A  and B , where B'Ay  , 'ABx \ .  

The inequality (4.2) seems to be rather difficult to interpret. The following proposi-

tion presents a more simple necessary condition. We introduce an auxiliary dissimilarity 

measure: 

        max  )y,x,y(),y,x,x(d yx    (4.3) 

for all Uy,x  . 

Proposition 4.4. Let ESD   be non-decreasing and weak decreasing and let -t clusters 

be disjoint for each t . Then the dissimilarity defined by (4.3) satisfies the ultrametric ine-

quality, i.e., for each Uz,y,x  : 

     max   y 


zyxzx d,dd  . 

Proof. Suppose td yx 
 , td zy 

  for some Uz,y,x   and some number t . Because of 

Proposition 4.3, the condition (4.2) is true. Applying this condition with  z,yA   we 

obtain: 

  
 

 
 

  







)z,y,(),x,,x()z,y,x(

z,yz,y



max  min  

   td,d zyyx     max   
 . 

From non-decreasing property, we conclude that   t)z,x(  . The non-decreasing and 

weak decreasing properties together imply the ESD is point-independent, so 

    t)z,x()z,x,x(  . In the same way, we can prove:   t)z,x,z(   and thus we 

obtain td zx 
 .  

This proposition shows that when -t clusters are disjoint, they may be interpreted as 

clusters of 
yxd   in the hierarchical clustering sense; see (4.1a,b). On the other hand, let a 

dissimilarity measure satisfying U1-U3 be given. Then the ESD 

 yx
xAy
dmax)A,x(   


 , 

is non-decreasing and weak decreasing (see example at the end of Section 3 for the 

proof). It is easy to see that the generalized dendrogram generated by this ESD is equal to 

the standard dendrogram generated by the dissimilarity measure. 
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5. Graph-Theoretic Clustering Methods and -t clusters 

In this section we consider some clustering techniques based on graph-theoretic con-

cepts (Hubert 1974; Matula 1977), using -t clusters. We demonstrate that they provide 

examples of generalized dendrogram, which is studied in the previous section. 

Conditions D1 and D4 will always apply throughout this section because of the 

ESD’s being weak decreasing; se Proposition 2.5. These conditions are certainly also true 

when ESD is non-increasing. To obtain GD, non-decreasing property is sufficient be-

cause of the Corollary of Proposition 3.1. This possibility is used in Section 4. Otherwise, 

we can take into consideration only all minimal or all maximal -t clusters to guarantee 

the condition GD is true. 

Assume a dissimilarity measure yxd   on finite set U , where xyyx dd     for all 

Uy,x  , yx  . This measure can also be thought of as a complete graph with vertices 

set U  and edges marked with values of yxd  . We denote by x  and n  respectively the 

maximal and minimal values of yxd   for all Uy,x  , yx  . 

Consider the threshold graph of level t :  tt E,UG  , as defined earlier. By  AGt  we 

denote the subgraph of tG  induced by the vertex subset UA . Now we introduce some 

functions to help define graph-theoretic clustering methods. For UA , Ay,x  , yx  , 

let: 
 - )t,A,y,x( the number of edge-disjoint parts of the graph  AGt , join-

ing the vertices x  and y ; 

 - )t,A,y,x(æ the number of vertex-disjoint (except for endpoints) path of 

 AGt , joining the vertices x  and y . 

Given these two functions, we define one more function, where a dot in subscript sub-

stitutes for the letter   or æ ; k  is an integer, 2   Uk ; UA , Ay,x  : 

  








 

,

,k)t,A,y,x(t

,

)A,y,x(k

1x

n
  : min 

otherwise.

   and  if

 if

,kAyx

,yx

2



 

Now we introduce one more function, where UA , Ay,x  : 
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











,

,d

,

)A,y,x( yxk

1x

n
 

otherwise.

   and  if

 if

,kAyx

,yx

1



 

and consider all three functions k , where a dot in a subscript substitutes for one of let-

ter  , æ ,  . These functions can be interpreted as conditional dissimilarities, meaning 

that conditions are determined by the subset A . Obviously, they possess the following 

properties: 

 )A,x,y()A,y,x( kk    , (5.1) 

 if 'AA , then )'A,y,x()A,y,x( kk    , (5.2) 

for all Uy,x  , U'A,A  , and any integer k . Now everything is ready for defining 

ESD’s: 
 )xA,y,x(max)A,x( k

xAy
k     , 

which are point-independent by definition. With the help of properties (5.1) and (5.2) we 

shall demonstrate that they are also ultrametric. Indeed, for Ax : 

   )yxA,u,x()yA,x( k
yAu

k   max  

      max max k )yA,y,x(),yA,u,x( k
Au

 
 . 

Applying (5.2) to the first item in brackets, we see it is not greater than )A,x(k . Apply-

ing (5.1) to the second one, we get: 

   )yA,x,y()yA,y,x( kk   

 )A,y()yA,u,y(max kk
yAu


  . 

Now conditions D1 and D4 are satisfied because of Proposition 2.5. Taking into consid-

eration only maximal -t clusters for each t , we satisfy the condition GD, and thus obtain 

a generalized dendrogram. Applying Proposition 4.2 with ns , we conclude that our 

clusters form a cover at each level of generalized dendrogram. 
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The -t clusters of k  and æk  are subsets such that any pair of vertices of the in-

duced subgraph of tG  is joined by at least k  edge-disjoint (respectively, vertex-disjoint 

except endpoints) paths, and no vertex may be added without losing this property. They 

are called -k components and -k blocks. In both cases we choose only the maximal sub-

sets with such a property, and obtain what Matula (1977) called strong -k linkage and 

-k overlap clustering methods. -t clusters of k  are cliques with more than k  elements, 

called -k cliques. They define the -k cliques clustering method. When 1k , we obtain 

  1 ; the ESD   was introduced in Section 2 and studied in Section 3. 

Consider now a function: 

 )t,A,x(  
 





,

, in  of degree

0

AGx t  
otherwise.

connected, is graph  thisif
 

and an ESD: 

 k
 








1x
,   : min k)t,A,x(t 
 
otherwise.

,   if kA 
 

It is obviously non-increasing, as is the ESD   introduced in Section 2. -t clusters of 

k  are subsets such that any vertex of the corresponding induced subgraph is incident to 

at least k  vertices, and no vertex may be added without losing this property. They are 

called -k bonds. -t clusters of   satisfy this property: any pair of vertices of the corre-

sponding induced subgraph is linked by a path, and no vertex may be added without los-

ing this property. Such a subgraph is called a component. 

To obtain a generalized dendrogram, we consider only minimal -t clusters. Thus, we 

have defined the weak -k linkage and the single-linkage clustering methods. In the latter 

case, the generalized dendrogram turns out to be a standard dendrogram. Indeed, it is easy 

to see that the conditions of Propositions 4.2 and 4.3 are true. 

ESD allows us to generate a typical hierarchical agglomerative clustering procedure if 

we define a set-to-set dissimilarity measure ),(D   as follows: 

 






















)A,y()B,x()B,A(D
ByAx
  max , maxmax . (5.3) 
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It is easy to see that   and   lead to the single- and complete-linkage clustering re-

spectively. To obtain more examples we define the direst -r dissimilarity )A,y,x(Dr  as 

minimal dissimilarity value, say t , such that x  and y  may be connected by a sequence 

of at most 1r  intermediate elements of A , where each adjacent pair in the sequence has 

a dissimilarity value less than or equal to t . The indirect -r dissimilarity )y,x(Ir  is the 

same but intermediate elements are chosen arbitrary from U . Since Dr  satisfies (5.1) 

and (5.2), the ESD 

 )xA,y,x(max)A,x( Dr
xAy

Dr 

   

is ultrametric. The following ESD is obviously non-decreasing: 

 )y,x(max)A,x( Ir
Ay

Ir   


 . 

Some hierarchical clustering methods may be defined through the complete-linkage with 

an adequate dissimilarity (or similarity) measure. It applies to indirect, but not to direct 

-r diameter clustering method, as stated by Hubert and Baker (1977). With the help of 

ESD’s Ir  and Dr  we obtain both trough (5.3). 

6. Conceptual Clustering and -t clusters 

The idea of conceptual clustering (Michalski and Stepp 1982, 1983) treats a cluster 

not as a simply a subset of a given set of objects, but as a specific concept. Each cluster 

represents a certain generalized description of a corresponding subcategory of objects. 

These descriptions are conjunctive concepts, involving attributes of objects, and thus are 

supposed to have a clear interpretation. 

Implementation of conceptual clustering should involve at least two kinds of subpro-

cedures: generation of candidate concepts and choosing an optimal subset of them. These 

subprocedures may be combined in different ways. The second subprocedure is our main 

concern. Let a family of candidate concepts be generated. The problem is choosing a sub-

family of it, which produces a partition of the set of objects if possible or in some sense 
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an “approximate partition” otherwise. We are going to demonstrate that this problem can 

be adequately formulated as finding a -t stable subset of concepts. 

Each candidate concept corresponds to some subset of the set of objects   and is 

supposed to be dense or compact enough in the “conceptual sense” (it is not necessary to 

define it precisely here). The problem is, given a family U  of such subsets, choose a sub-

family which is as proximate as possible to being a partition of  . 

Consider a Boolean matrix xa  with the row index set U  and the column index set 

 , where 1xa  if x , and 0xa  otherwise. To estimate a subfamily UA  

suppose we add an element AUx \  to it. Doing so is appropriate if x  covers some ob-

jects not covered by any member of A , but not if x  covers objects that are already cov-

ered, because it creates overlapping clusters. Thus the utility of joining x  to A  may be 

estimated by the function: 

  
 











x xAy
ya)A,x(


 , 

where a function )n(  is decreasing, positive for 0n , and negative for 1n . Obvi-

ously,   is non-decreasing, but it is also integrable. Indeed. consider a function   de-

fined as follows: 

 00 )( , 





1

1

n

i

)i()n(   for 1n . 

Now   satisfies (2.1) with the set function: 

  
 












Ax

xa)A(f . 

Our problem of choosing the approximate partition may now be formulated in the follow-

ing extremal form: 

  UAAt)A(f   :  max  , 

or equivalently: 

  UAAt)A(f   :   min  , (6.1) 

where the term   At   plays the role of a penalty for too many clusters, or for too fine a 

clustering. 
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By Proposition 2.4, the minima of (6.1) are exactly the -t clusters of  . Moreover, as 

  is non-decreasing, (6.1) constitutes the problem of minimizing the submodular set 

function, as is shown in Nemhauser, Wolsey, and Fisher (1978). Some fast approximate 

algorithms for such a problem can be found there. For exact algorithm, which is optimal 

in “the worst case,” see Genkin and Muchnik (1990). 

7. Summary 

The fixed point concept provides a basis for a rather general definition of a cluster, 

called -t cluster, or a -t stable set. The definition of -t cluster is based on a dissimilarity 

measure between elements and subsets of the set being clustered, called the “element-set” 

type dissimilarity measure (ESD). Some basic mathematical properties of -t clusters are 

shown, where the most important are the existence problem and the relation to monotone 

system theory. 

Our results are applied to different clustering strategies, which turn out to be particu-

lar cases of the theory developed. Hierarchical clusters produced by agglomerative proce-

dures are -t clusters with monotone and ultrametric ESD. Such ESD’s produce clustering 

structures, which are more general than hierarchical ones in that the overlapping clusters 

and elements belonging to no clusters are permitted. 

A set of clustering strategies based on graph-theoretic concepts is considered. An ap-

propriate definition of ESD permits each of them to be formulated trough the -t cluster 

concept. 

Conceptual clustering gives quite another application of our theory. The problem is to 

choose the subfamily of a family of subsets of a finite set, which is approximate partition 

of this set. This problem is formulated as finding a -t stable subset in the family just men-

tioned. 
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