
 1/13

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED
PROCEEDINGS OF TALLINN TECHNICHAL UNIVERSITY

(Data Processing, Compiler Writing, Programming)

ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

ISSN 0136-3549, 0320-3409 No. 614 1986
pp. 93 – 105 UDC 681.3.06

 P. Vyhandu

New Ideas in Data Base Segmentation

Abstract

In this approach a relational database is designed such that the

data more often occurring in the same query belongs to one

relation. In this way the need for creating access paths is

reduced. Bitmatrices allow connecting different search

techniques. Bitmatrices can be interpreted as monotonic systems,

rows of bitmatrices as bitmaps of objects and as hashing keys.

1. Introduction

The fast search has become a problem in very large data sets. There many

methods for organizing effective search [1,2], but situations always arise where a

method becomes ineffective for some reason. It is often useful to use different search

techniques in different stages of the search process. But we are faced with matching

those techniques.

This paper presents an approach, where Bitmatrices use allows connecting

different search techniques. Bitmatrices can be interpreted as monotone systems [3], 1

rows of Bitmatrices as bitmaps of objects [6] and as hashing-keys [7].

1 Monotone Systems where first introduced by Mullat J.E (1971) in “On the Maximum Principle of

Some Set Functions,” Proceedings of Tallinn Technical University, Seria A, No. 313, pp. 37-44,
http://www.datalaundering.com/download/modular.pdf , and later described in extended paper,
Mullat J. E, (1976,1977) “Extremal Subsystems of Monotonic Systems, I,II,III,” Automation and
Remote Control, v.37, 758-766, 37, 1286-1294; v.38, 89-96,
http://www.datalaundering.com/mono/extremal.htm . Notation belongs to JM.

The author of
this article is Leo
Võhandu, not
P. Võhandu

 2/13

In section 2 a general description of the proposed method will be given. In

section 3 definitions of monotonic systems and their kernels will be introduced. In

section 4 a more detailed description of database design and search process will be

given.

2. Methods for quick search

In relational databases data is maintained in relations, where each relation

contains one record type. 2 The record type usually corresponds to a real world

concept. In our approach relational database is designed such that the data more often

occurring in the same query belongs into one relation. In this way the need for

creating access paths, which is a time-consuming process, is reduced.

To decide which data must be maintained in one relation, an analysis of the data

set is made first. After forming relations directories are built for them. Records in the

relation are grouped to have similar records in one group. On these groups

hierarchical structures, called directories, are built. Using directories enables us to

determine the groups, which cannot contain records satisfying the given query in the

early stage of search.

In such a database a thorough search on a small part of database is implemented

and search time becomes much shorter.

Concepts of the monotonic system and its kernel are used for preceding analysis

of the data set and clustering. Bitmatrices serve as so-called upper structures on which

the main search is performed.

The structure of the database depends completely on data characteristics and it

is impossible to predict the number of relations in the database, which depends of

groups in a relation and that of records in one group. For that reason the extendible

hash method fits well to find the real records. This hash method has properties, which

make it very convenient to use when the number of records in the hash table is not

known and the hash keys are in the binary form. The hash method is not dealt with

here, but its description can be found in [4, 7].

2 “The central data description construct in this model is a relation, which can be thought as a set of

records”, cit. from Database Management Systems, R. Ramakrishnan & J. Gehrke, Sec. Ed., p.10.
Notation belongs to JM.

 3/13

3. Monotonic systems. Kernel

As it was observed in the previous section data ordering must precede the design

of the database. Concepts of monotonic system and its kernel splitting algorithms are

used for that [3]. First definitions and kernel splitting algorithms are given. In case of

data set analysis and record grouping we have to interpret data matrices as different

monotonic systems. Therefore different algorithms for the kernel splitting are

introduced.

3.1. Definitions

Let us suppose that there is a system W with a finite number of elements. Each

element has a numerical measure of its weight (influence) in the system. Let us

suppose further that for every element W there is a feasible discrete operation,

which changes the weight of  as well as the weights of any other element  of the

system. If the elements on W are independent, then it is natural to suppose that the

change in the weight of  does not change the value of any element  . System is

called monotonic, if the operation of the weight change of any element W brings

about changes on the weights levels of other elements only in the direction in which

 itself is changed.

To use the method of monotonic systems we have to meet two conditions:

1) There has to be a function  , which gives a measure (weight))W( of
influence for every element W of the monotonic system W . 3

2) There has to be rules f 4 to recalculate the influence of the elements of the
system in case there occurs a change in the weight of one element.

3 This passage appears to be misleading: “There has to be a function  , which gives a measure

(weight))H,( of influence for every element H of the subset H of the monotonic system

W ”. Note belongs to JM.
4 An example of influence functions f may be found in “A Study of Infraspecific Groups of the Baltic

East Coast Autumn Herring by Two Methods Based on Cluster Analysis,” Appendix 1, J. Mullat
(1974). Note belongs to JM.

 4/13

A kernel of a monotonic system W is defined as a subset *H 5 of its elements

on which the global minimum of function

)H,(max)H(F
H




,)H(FminargH
WH

*




is reached. 6

3.2. Kernel splitting (one-dimensional case)

Let us have a data matrix j iaA  ; M,...,i 1 ; N,...,j 1 . Let us interpret

matrix A as a monotonic system, the elements of which are the rows ia of A .

Kernel is a subset *H of its elements on which the global minimum of function

)H,a(max)H(F i
Hai




,)H(FminargH
WH

*




is reached. To measure the influence of an object on the system, we define the

function
   

j
j ij ii nnS 132 2 , (1)

where j in is the frequency of value j ia in the histogram of the j -th attribute.

To split the kernel of the monotonic system we will find sequentially the

elements with the greatest influence and add copies of the to the system. It has been

made clear that addition of an element to the system alters the influence of all other

elements.

Adding an element k to the system changes the influence for any other element

i for

    
  







j
j ij ij i

j
j ij ij ij i

nnn

nn)n(S)n(S

541321

13121

2

2

, (2)

5 To be more precise the kernel notification should be  kernel

*H , or simply
*H . Correction is

made without warning everywhere below as needed. Note added by JM.
6 In Mullat J. E, (1976) “Extremal Subsystems of Monotonic Systems, I,” Automation and Remote

Control, v.37, 758-766, a subsystem, on which F reaches a global minimum, is called a  kernel of
the system W .

 5/13

where











j ij k

j ij k

aa if ,

aa if ,

0

1
, i.e., we sum the frequencies only for those attributes of

object i , when the value of the an attribute matches the value of an attribute of the

object k . If objects k and i do not have matching attribute values, addition of the

element k to the system does not influence the element i .

Algorithm 1 performs the kernel splitting. 7 In this algorithm elements are not

actually added to the system, only the influences are computed accordingly. By an

added element we mean a labeled element with the greatest influence.

Algorithm 1.

Step 1. For each element ia , M,...,i 1 compute

   
j

j ij ii nnS 132 2 .

Step 2. Find i
M,i

S maxargk
1

 , memorize k , kS .

Step 3. For each element compute iii PSS  , where LTPi  54 , and T

is the sum of the frequencies of the matching attribute values of elements
k and i , and L is the number of matches.

Step 4. Find iSmax for all elements not added to the system.

Step 5. If ki SSmax  then end the algorithm. 8

Step 6. Memorize i
M,i

S maxargk
1

 , kS .

Step 7. In the auxiliary table of frequencies for every value for the element k
add 1.

Step 8. Go to step 3.

7 Actually the algorithm does not split the ⊕ kernel but it finds somewhat estimate for ⊖ kernel.
8 Here is the major mistake why the algorithm does not split the kernel. The algorithm must continue

once again, this time from step 2, memorizing the lower iSmax value as usual and continuing with

Step 3 over again, as usual. The algorithm ends when all elements in table A are processed (added)
– not just one pass through step 5. Only the last pass through the step 5 splits the ⊕ kernel from the

table. Fortunately, for the author, it might be quite probable that an estimate for ⊖ kernel from the A
table splits away by this algorithm, see the duality theorem in J. Mullat,“Extremal Subsystems of
Monotonic Systems, II,” Automation and Remote Control, v.37, 1286-1294. On the conceptual level
the ⊖ kernel estimate spitted by current algorithm, fits well and serves the purposes of current
investigation. Unfortunately no formal theoretical properties of the estimate been investigated. Notice
belongs to JM.

This algorithm 1 is constructing the so called defining sequence, following J.Mullat

 6/13

On step 5 reaching the extremum of the function  is controlled. All the elements

memorized before reaching the extremum of function  , belong to the kernel of the

monotonic system. 9

3.3. Kernel splitting (two-dimensional case)

Let us have a data matrix j iaA  , M,...,i 1 , N,...,j 1 . Let us interpret

matrix A as a monotonic system, the elements of which are rows ia and columns ja ,

Aa,a ji  . The kernel is a subset *H of its elements on which the global minimum of

function
)H,a,a(max)H(F ji

Ha
Ha

j

i





,)H(FminargH
WH

*


 ,

is reached.

Let us have for every element ia a number of its incidences in . Then the

number of incidences having the j -th attribute is equal to

  
i

ij nh , (3)

where











00

11

j i

j i

a if ,

a if ,
.

Initial influences can be computed as follows

   
j

jjii hhng 132 2 (4)

for the element ia and

  132 2  jjjj hhhg (5)

for the elements ja .

9 Obviously the author means that the local extremum has been controlled, and all elements memorized

constitute ⊖ kernel estimate. In the next section the same type of algorithm performs, but this time
upon two-dimensional table. All just said about the one-dimensional algorithm is valid in two-
dimensional case. We are not going to make similar notation in this direction any more, JM.

 7/13

To split the kernel we will add the elements with the greatest influence to the

system. Adding an element ja to the system, the influence of every other element ra ,

M,...,r 1 grows by

    132 2
jjrr hhnd . (6)

Adding an element ia to the system, influence of elements ja can be computed

by a formula

    132 2 kkg j ,

where
 ij nhk  (7)

and the influence of the element ra , M,...r 1 grows by

     
     
     . hnnnnnnhn

hhnhnhn

nhhkkr

jiiriiijr

jjijijr

rjj

322324

132132

132132

2

22

22







 (8)

To add elements to the monotonic system up to the kernel splitting, we use:

Algorithm 2.
Step 1. For each j , N,...,j 1 compute the number of incidences jh by formula (3).

Step 2. By formula (4) and (5) compute initial influences ig and jg .

Step 3. Find the element with the greatest influence, i.e., gmaxp
ji ggg 

 .

Step 4. Memorize








j

i

gg if ,j

gg if ,i
k and pSk  .

Step 5. If iggmax  , go to step 8.

Step 6. For each r , M,...,r 1 compute rd by formula (6) and add it to the

influence rg .

Step 7. Go to step 10.

Step 8. For each j , M,...,j 1 compute influences jg by formula (7).

Step 9. For each r , M,...,r 1 compute rgg rr  , where r  is computed by

formula (8).

Step 10. Find gmaxp
ji ggg 

 . If pSk  go to step 4.

Step 11. End of algorithm.

Once again, the algorithm 2 is constructing the so called defining sequence, following J.Mullat

 8/13

4. Database design

Database design is divided into two stages: analysis of the data set for

partitioning data items into relations and build-up of directories.

4.1. Data set analysis

For a relational database we have the following definitions [5].

Attributes are identifiers taken from a finite set nA,...,A,A 21 . Each attribute

iA is associated with its domain, denoted by)A(DOM i , which is a set of possible

values for that attribute. We use the letter ,...B,A for single attribute and the letter

,...Y,X for sets of attributes.

A relation on the set of attributes  nA,...,A,A 21 is a subset of the Cartesian

product)A(DOM...)A(DOM)A(DOM n 21 . The elements of the relation are

called tuples. A relation R on  nA,...,A,A 21 is denoted by)A,...,A,A(R n21 .

Relational algebra as a data manipulation language is introduced. There are two

basic operations of interest for us: projection and natural join.

The projection of a relation)Z,Y,X(R over the attributes in X will be

denoted  XR , and defined by     Rz,y,x : z y x XR  .

The natural join operation is used to make a connection between attributes that

appear in different relations. Let)y,x(R and)z,x(S be two relations; then the

natural join S*R is a relation defined over the attributes  Z,Y,X .

Let)Z,Y,X(R be a relation; we shall say that R is decomposable if there

exist two relations S and T , such as:

a) S and T are the projections of R :]y,x[RS  ,]z,y[RT  .

b) the natural join of S and T is R : T*SR  .

 9/13

Using the natural join operation all the relations in the database can be put into

one relation U . A model matrix A can be put into correspondence with the relation

U

1T 2T . . .
nT

1O

2O

.
j ia

.

.

mO

A

where  iO , n,...,i 1 is the set of objects types,  jT , m,...,j 1 is

the set of attributes and





otherwise. 0,

,T attributean has O eobject typan if ,
a ji

j i

1

For each object type the number of its incidences is also given.

Such a model can be interpreted as a monotonic system described in section 3.3.

Using Algorithm 2 all kernels of the system are separated.

Let as suppose that the number of separated kernels is equal to p . The kernel is

denoted by sK , p,...,s 1 . Using the projection operation, relation U can be

decomposed in the following way:

a)  11 XUR  ,  22 XUR  ,…,  nn XUR  ,

b) pR*...*R*RU 21 ,

where  jS aX  , sj Ka  and tuples of relation iR are incidences of the object

types corresponding to the elements Si Ka  .

The relations created contain similar items.

 10/13

But it might to be more effective, if we could store data that occurs in the same

query in one relation. Then the need to use operations of relational algebra is reduced

and therefore search time decreases.

To achieve that, queries and connection determined by the queries must be

considered on the model matrix A in addition to object types and attributes. The

model matrix A is presented in the following form:

1T 2T . . .

nT 1S 2S . . .
nS

1O

2O

.

.

.

mO

1P

2P

.

.

.

kP

A

where  iO , m,...,i 1 denotes the set of objects types,

  jT , n,...,j 1 denotes the set of attributes,

  iP , k,...,i 1 denotes the set of queries,

  jS , ,...,j 1 denotes the set of connections,

and







;n,...,j ,m,...,i otherwise, ,

,T attributean has O eobject typan if ,
a ji

j i
110

1








;kn,...,nj ,km,...,mi otherwise, ,

,T attributean contains Pquery a if ,
a ji

j i
110

1








;kn,...,nj ,km,...,mi otherwise, ,

 ,S connection a determines Pquery a if ,
a ji

j i
110

1








.n,...,nj ,m,...,i otherwise, ,

,O eobject typan contains S connection a if ,
a ij

j i
110

1

 11/13

For each object type the number of its instances and for each query the

frequency of occurrence is also given. Analogously to the preceding model, matrix A

is interpreted as a monotonic system, all the kernels are separated and new relations

are created. Record types in relations are structures where data items are not only

similar to each other, but are closely connected through occurrence in the same

queries.

4.2. Bitmaps and directories.

Let us have in one relation m records and n attributes, where j -th attribute

 n,...,j 1 has jN different values. Then the bitvector of length 



n

j
jNd

1
 can be

created for each record.

The elements of the bitvector are filled as follows:








.N,...,j otherwise, ,

,k valuehas record if ,
a

j

k
j 10

1

This bitvector is called bitmap. 10 In [6] the approach of directories built of the

bitmaps is given.

Let us interpret the set of bitmaps as a monotonic system. Using Algorithm 1

from section 3.2 all kernels are separated. Using disjunction operator one superbitmap

is formed of bitmaps belonging to one kernel. This superbitmap is called an address.

Out of the formed addresses a new monotonic system can be made and the

process can be repeated. Using that process recursively a hierarchical structure, called

directory, is formed.

10 R. Ramakrishnan & J. Gehrke, call the exact notion by bitmaps indexes in their Database

Management Systems monograph, Sec. Ed., – “First, they allow the use of efficient bit operations to
answer the queries…Second, bitmap indexes can be much more compact than the traditional B
tree index and are very amenable to use of compression techniques.” p.691.

 12/13

4.3. Search process

If the database is created using the methods described in this paper, a relation

and its directory will be in the form shown in Figure 1.

directory

bitmaps

Extendible
hashing

relation

Figure 1

The database consists of relations. A set of bitmaps corresponds to each relation

on which a directory is built. Records in relations are connected with their bitmaps via

extendible hashing. Bitmaps and directories are called upper structures of the

database.

The search process runs as follows.

According to a given query we have first to determine in which relations the

needed data is stored. After that directories of these relations are examined. If we

found out that the group the given address is representing cannot contain the needed

data, we do not investigate it any further. A sequential search is performed on the set

of bitmaps, which may meet query conditions. Using extendible hashing the needed

records are quickly located.

 13/13

The search time is reduced because

(1) of a great probability that the needed data is stored in one relation. The need
for relational algebra operations is decreased.

(2) even in the realm of one relation the sieving process cuts off the number of
objects on which the full search is performed.

References

1. Martin J., Computer database organization, Prentice-Hall, 1977.

2. Salton G., Dynamic information and library processing, Prentice-Hall, 1975.

3. Mullat J., Vyhandu L., “Monotonic systems in scene analysis”, Symposium,
Mathematical Processing of Cartographic Data, Tallinn, 1979, pp.63-66.

4. Fagin R., Nievergelt J., Pippenger N., Strong H.R., “Extendible hashing, a
fast access method for dynamic files,“ ACM TODS, 1979, Vol. 4, No. 3,
pp.315-344.

5. Dolobel C,. Pichat E., “The design of relational information system
according to different kinds of dependencies,” COMPSAC 78, Proc. IEEE,
Chicago, 1978.

6. Выханду Л.К., Выханду П.Л., Быстрый поиск на битматрицах, Тр.
Таллинск. Политех. Ин-та, 1983, № 554, с. 49.60.

7. Выханду Л.К., Выханду П.Л., Синтез метода адресных книг и
расширяющегося хэширования, Тр. Таллинск. Политех. Ин-та, 1984, №
568.

http://www.datalaundering.com/download/Duda_Hart.pdf

