
   1/13
 

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED 
PROCEEDINGS OF TALLINN TECHNICHAL UNIVERSITY 

(Data Processing, Compiler Writing, Programming) 

ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА 
 
 

ISSN 0136-3549, 0320-3409 No. 614  1986 
pp. 93 – 105  UDC 681.3.06 
 
 
 P. Vyhandu  
 

New Ideas in Data Base Segmentation 

Abstract 

In this approach a relational database is designed such that the 

data more often occurring in the same query belongs to one 

relation. In this way the need for creating access paths is 

reduced. Bitmatrices allow connecting different search 

techniques. Bitmatrices can be interpreted as monotonic systems, 

rows of bitmatrices as bitmaps of objects and as hashing keys. 

1. Introduction 

The fast search has become a problem in very large data sets. There many 

methods for organizing effective search [1,2], but situations always arise where a 

method becomes ineffective for some reason. It is often useful to use different search 

techniques in different stages of the search process. But we are faced with matching 

those techniques. 

This paper presents an approach, where Bitmatrices use allows connecting 

different search techniques. Bitmatrices can be interpreted as monotone systems [3], 1 

rows of Bitmatrices as bitmaps of objects [6] and as hashing-keys [7]. 

                                                           
1 Monotone Systems where first introduced by Mullat J.E (1971) in “On the Maximum Principle of 

Some Set Functions,” Proceedings of Tallinn Technical University, Seria A, No. 313, pp. 37-44, 
http://www.datalaundering.com/download/modular.pdf , and later described in extended paper, 
Mullat J. E, (1976,1977) “Extremal Subsystems of Monotonic Systems, I,II,III,” Automation and 
Remote Control, v.37, 758-766, 37, 1286-1294; v.38, 89-96, 
http://www.datalaundering.com/mono/extremal.htm . Notation belongs to JM. 
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In section 2 a general description of the proposed method will be given. In 

section 3 definitions of monotonic systems and their kernels will be introduced. In 

section 4 a more detailed description of database design and search process will be 

given. 

2. Methods for quick search 

In relational databases data is maintained in relations, where each relation 

contains one record type. 2 The record type usually corresponds to a real world 

concept. In our approach relational database is designed such that the data more often 

occurring in the same query belongs into one relation. In this way the need for 

creating access paths, which is a time-consuming process, is reduced. 

To decide which data must be maintained in one relation, an analysis of the data 

set is made first. After forming relations directories are built for them. Records in the 

relation are grouped to have similar records in one group. On these groups 

hierarchical structures, called directories, are built. Using directories enables us to 

determine the groups, which cannot contain records satisfying the given query in the 

early stage of search. 

In such a database a thorough search on a small part of database is implemented 

and search time becomes much shorter. 

Concepts of the monotonic system and its kernel are used for preceding analysis 

of the data set and clustering. Bitmatrices serve as so-called upper structures on which 

the main search is performed. 

The structure of the database depends completely on data characteristics and it 

is impossible to predict the number of relations in the database, which depends of 

groups in a relation and that of records in one group. For that reason the extendible 

hash method fits well to find the real records. This hash method has properties, which 

make it very convenient to use when the number of records in the hash table is not 

known and the hash keys are in the binary form. The hash method is not dealt with 

here, but its description can be found in [4, 7]. 

                                                           
2 “The central data description construct in this model is a relation, which can be thought as a set of 

records”, cit. from Database Management Systems, R. Ramakrishnan & J. Gehrke, Sec. Ed., p.10. 
Notation belongs to JM. 
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3. Monotonic systems. Kernel 

As it was observed in the previous section data ordering must precede the design 

of the database. Concepts of monotonic system and its kernel splitting algorithms are 

used for that [3]. First definitions and kernel splitting algorithms are given. In case of 

data set analysis and record grouping we have to interpret data matrices as different 

monotonic systems. Therefore different algorithms for the kernel splitting are 

introduced. 

3.1. Definitions 

Let us suppose that there is a system W  with a finite number of elements. Each 

element has a numerical measure of its weight (influence) in the system. Let us 

suppose further that for every element W  there is a feasible discrete operation, 

which changes the weight of   as well as the weights of any other element   of the 

system. If the elements on W  are independent, then it is natural to suppose that the 

change in the weight of   does not change the value of any element  . System is 

called monotonic, if the operation of the weight change of any element W  brings 

about changes on the weights levels of other elements only in the direction in which 

  itself is changed. 

To use the method of monotonic systems we have to meet two conditions: 

1) There has to be a function  , which gives a measure (weight) )W(  of 
influence for every element W  of the monotonic system W . 3 

2) There has to be rules f  4 to recalculate the influence of the elements of the 
system in case there occurs a change in the weight of one element. 

                                                           
3 This passage appears to be misleading: “There has to be a function  , which gives a measure 

(weight) )H,(  of influence for every element H  of the subset H  of the monotonic system 

W ”. Note belongs to JM. 
4 An example of influence functions f  may be found in “A Study of Infraspecific Groups of the Baltic 

East Coast Autumn Herring by Two Methods Based on Cluster Analysis,” Appendix 1, J. Mullat 
(1974). Note belongs to JM. 
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A kernel of a monotonic system W  is defined as a subset *H  5 of its elements 

on which the global minimum of function  

 )H,(max)H(F
H




, )H(FminargH
WH

*


  

is reached. 6 

3.2. Kernel splitting (one-dimensional case) 

Let us have a data matrix j iaA  ; M,...,i 1 ; N,...,j 1 . Let us interpret 

matrix A  as a monotonic system, the elements of which are the rows ia  of A . 

Kernel is a subset *H  of its elements on which the global minimum of function 

 )H,a(max)H(F i
Hai




, )H(FminargH
WH

*


  

is reached. To measure the influence of an object on the system, we define the 

function 
   

j
j ij ii nnS 132 2 , (1) 

where j in  is the frequency of value j ia  in the histogram of the j -th attribute. 

To split the kernel of the monotonic system we will find sequentially the 

elements with the greatest influence and add copies of the to the system. It has been 

made clear that addition of an element to the system alters the influence of all other 

elements. 

Adding an element k  to the system changes the influence for any other element 

i  for 

    
  







j
j ij ij i

j
j ij ij ij i

nnn

nn )n(S)n(S

541321

13121

2

2

, (2) 

                                                           
5 To be more precise the kernel notification should be  kernel 

*H , or simply 
*H . Correction is 

made without warning everywhere below as needed. Note added by JM. 
6 In Mullat J. E, (1976) “Extremal Subsystems of Monotonic Systems, I,” Automation and Remote 

Control, v.37, 758-766, a subsystem, on which F  reaches a global minimum, is called a  kernel of 
the system W . 
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where 











j ij k

j ij k

aa if ,

aa if ,

0

1
, i.e., we sum the frequencies only for those attributes of 

object i , when the value of the an attribute matches the value of an attribute of the 

object k . If objects k  and i  do not have matching attribute values, addition of the 

element k  to the system does not influence the element i . 

Algorithm 1 performs the kernel splitting. 7 In this algorithm elements are not 

actually added to the system, only the influences are computed accordingly. By an 

added element we mean a labeled element with the greatest influence. 

Algorithm 1.  

Step 1. For each element ia , M,...,i 1  compute 

   
j

j ij ii nnS 132 2 . 

Step 2. Find i
M,i

S maxargk
1

 , memorize k , kS . 

Step 3. For each element compute iii PSS  , where LTPi  54 , and T  

is the sum of the frequencies of the matching attribute values of elements 
k  and i , and L  is the number of matches. 

Step 4. Find iSmax  for all elements not added to the system. 

Step 5. If ki SSmax   then end the algorithm. 8 

Step 6. Memorize i
M,i

S maxargk
1

 , kS . 

Step 7. In the auxiliary table of frequencies for every value for the element k  
add 1. 

Step 8. Go to step 3. 

                                                           
7 Actually the algorithm does not split the ⊕ kernel but it finds somewhat estimate for ⊖ kernel. 
8 Here is the major mistake why the algorithm does not split the kernel. The algorithm must continue 

once again, this time from step 2, memorizing the lower iSmax  value as usual and continuing with 

Step 3 over again, as usual. The algorithm ends when all elements in table A  are processed (added) 
– not just one pass through step 5. Only the last pass through the step 5 splits the ⊕ kernel from the 

table. Fortunately, for the author, it might be quite probable that an estimate for ⊖ kernel from the A  
table splits away by this algorithm, see the duality theorem in J. Mullat,“Extremal Subsystems of 
Monotonic Systems, II,” Automation and Remote Control, v.37, 1286-1294. On the conceptual level 
the ⊖ kernel estimate spitted by current algorithm, fits well and serves the purposes of current 
investigation. Unfortunately no formal theoretical properties of the estimate been investigated. Notice 
belongs to JM. 

This algorithm 1 is constructing the so called defining sequence, following J.Mullat



   6/13
 

On step 5 reaching the extremum of the function   is controlled. All the elements 

memorized before reaching the extremum of function  , belong to the kernel of the 

monotonic system. 9 

3.3. Kernel splitting (two-dimensional case) 

Let us have a data matrix j iaA  , M,...,i 1 , N,...,j 1 . Let us interpret 

matrix A  as a monotonic system, the elements of which are rows ia  and columns ja , 

Aa,a ji  . The kernel is a subset *H  of its elements on which the global minimum of 

function 
 )H,a,a(max)H(F ji

Ha
Ha

j

i





, )H(FminargH
WH

*


 , 

is reached. 

Let us have for every element ia  a number of its incidences in . Then the 

number of incidences having the j -th attribute is equal to 

  
i

ij nh , (3) 

where 











00

11

j i

j i

a if ,

a if ,
. 

Initial influences can be computed as follows 

   
j

jjii hhng 132 2  (4) 

for the element ia  and 

  132 2  jjjj hhhg  (5) 

for the elements ja . 

                                                           
9 Obviously the author means that the local extremum has been controlled, and all elements memorized 

constitute ⊖ kernel estimate. In the next section the same type of algorithm performs, but this time 
upon two-dimensional table. All just said about the one-dimensional algorithm is valid in two-
dimensional case. We are not going to make similar notation in this direction any more, JM.  
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To split the kernel we will add the elements with the greatest influence to the 

system. Adding an element ja  to the system, the influence of every other element ra , 

M,...,r 1  grows by 

    132 2
jjrr hhnd . (6) 

Adding an element ia  to the system, influence of elements ja  can be computed 

by a formula 

    132 2 kkg j , 

where 
 ij nhk   (7) 

and the influence of the element ra , M,...r 1  grows by 

     
     
     . hnnnnnnhn

hhnhnhn

nhhkkr

jiiriiijr

jjijijr

rjj

322324

132132

132132

2

22

22







 (8) 

To add elements to the monotonic system up to the kernel splitting, we use:  

Algorithm 2.  
Step 1. For each j , N,...,j 1  compute the number of incidences jh  by formula (3). 

Step 2. By formula (4) and (5) compute initial influences ig  and jg . 

Step 3. Find the element with the greatest influence, i.e., gmaxp
ji ggg 

 . 

Step 4. Memorize 








j

i

gg if ,j

gg if ,i
k  and pSk  . 

Step 5. If iggmax  , go to step 8. 

Step 6. For each r , M,...,r 1  compute rd  by formula (6) and add it to the 

influence rg . 

Step 7. Go to step 10. 

Step 8. For each j , M,...,j 1  compute influences jg  by formula (7). 

Step 9. For each r , M,...,r 1  compute rgg rr   , where r   is computed by 

formula (8). 

Step 10. Find gmaxp
ji ggg 

 . If pSk   go to step 4. 

Step 11. End of algorithm. 

Once again, the algorithm 2 is constructing the so called defining sequence, following J.Mullat 
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4. Database design 

Database design is divided into two stages: analysis of the data set for 

partitioning data items into relations and build-up of directories. 

4.1. Data set analysis 

For a relational database we have the following definitions [5]. 

Attributes are identifiers taken from a finite set nA,...,A,A 21 . Each attribute 

iA  is associated with its domain, denoted by )A(DOM i , which is a set of possible 

values for that attribute. We use the letter ,...B,A  for single attribute and the letter 

,...Y,X  for sets of attributes. 

A relation on the set of attributes  nA,...,A,A 21  is a subset of the Cartesian 

product )A(DOM...)A(DOM)A(DOM n 21 . The elements of the relation are 

called tuples. A relation R  on  nA,...,A,A 21  is denoted by )A,...,A,A(R n21 . 

Relational algebra as a data manipulation language is introduced. There are two 

basic operations of interest for us: projection and natural join. 

The projection of a relation )Z,Y,X(R  over the attributes in X  will be 

denoted  XR , and defined by     Rz,y,x : z  y   x XR  . 

The natural join operation is used to make a connection between attributes that 

appear in different relations. Let )y,x(R  and )z,x(S  be two relations; then the 

natural join S*R  is a relation defined over the attributes  Z,Y,X . 

Let )Z,Y,X(R  be a relation; we shall say that R  is decomposable if there 

exist two relations S  and T , such as: 

a) S  and T  are the projections of R : ]y,x[RS  , ]z,y[RT  . 

b) the natural join of S  and T  is R : T*SR  . 
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Using the natural join operation all the relations in the database can be put into 

one relation U . A model matrix A  can be put into correspondence with the relation 

U  

1T  2T  . . .
nT

1O        

2O        

.   
j ia    

.       

.       

mO        

A

where  iO , n,...,i 1  is the set of objects types,  jT , m,...,j 1  is 

the set of attributes and 





otherwise. 0,

,T attributean  has O eobject typan  if ,
a ji

j i

1
 

For each object type the number of its incidences is also given. 

Such a model can be interpreted as a monotonic system described in section 3.3. 

Using Algorithm 2 all kernels of the system are separated. 

Let as suppose that the number of separated kernels is equal to p . The kernel is 

denoted by sK , p,...,s 1 . Using the projection operation, relation U  can be 

decomposed in the following way: 

a)  11 XUR  ,  22 XUR  ,…,  nn XUR  , 

b) pR*...*R*RU 21 , 

where  jS aX  , sj Ka   and tuples of relation iR  are incidences of the object 

types corresponding to the elements Si Ka  . 

The relations created contain similar items. 
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But it might to be more effective, if we could store data that occurs in the same 

query in one relation. Then the need to use operations of relational algebra is reduced 

and therefore search time decreases. 

To achieve that, queries and connection determined by the queries must be 

considered on the model matrix A  in addition to object types and attributes. The 

model matrix A  is presented in the following form: 

 
1T  2T  . . . 

nT 1S 2S . . .
nS

1O           

2O           

.          

.          

.          

mO           

1P           

2P           

.          

.          

.          

kP           

A

where   iO , m,...,i 1  denotes the set of objects types, 

  jT , n,...,j 1  denotes the set of attributes, 

  iP , k,...,i 1  denotes the set of queries, 

  jS , ,...,j 1  denotes the set of connections, 

and 







;n,...,j ,m,...,i  otherwise, ,

,T attributean  has O  eobject typan  if ,
a ji

j i
110

1
 

 







;kn,...,nj ,km,...,mi  otherwise, ,

,T attributean  contains Pquery  a if ,
a ji

j i
110

1
 

 







;kn,...,nj ,km,...,mi  otherwise, ,

  ,S connection a determines Pquery  a if ,
a ji

j i
110

1
 

 







.n,...,nj ,m,...,i  otherwise, ,

,O eobject typan  contains S connection a if ,
a ij

j i
110

1
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For each object type the number of its instances and for each query the 

frequency of occurrence is also given. Analogously to the preceding model, matrix A  

is interpreted as a monotonic system, all the kernels are separated and new relations 

are created. Record types in relations are structures where data items are not only 

similar to each other, but are closely connected through occurrence in the same 

queries. 

4.2. Bitmaps and directories. 

Let us have in one relation m  records and n  attributes, where j -th attribute 

 n,...,j 1  has jN  different values. Then the bitvector of length 



n

j
jNd

1
 can be 

created for each record. 

The elements of the bitvector are filled as follows: 

 







.N,...,j otherwise, ,

,k  valuehas record if ,
a

j

k
j 10

1
 

This bitvector is called bitmap. 10 In [6] the approach of directories built of the 

bitmaps is given. 

Let us interpret the set of bitmaps as a monotonic system. Using Algorithm 1 

from section 3.2 all kernels are separated. Using disjunction operator one superbitmap 

is formed of bitmaps belonging to one kernel. This superbitmap is called an address. 

Out of the formed addresses a new monotonic system can be made and the 

process can be repeated. Using that process recursively a hierarchical structure, called 

directory, is formed. 

                                                           
10 R. Ramakrishnan & J. Gehrke, call the exact notion by bitmaps indexes in their Database 

Management Systems monograph, Sec. Ed., – “First, they allow the use of efficient bit operations to 
answer the queries…Second, bitmap indexes can be much more compact than the traditional B  
tree index and are very amenable to use of compression techniques.” p.691. 
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4.3. Search process 

If the database is created using the methods described in this paper, a relation 

and its directory will be in the form shown in Figure 1. 

directory 

bitmaps 

Extendible
hashing 

 
relation 

Figure 1 

The database consists of relations. A set of bitmaps corresponds to each relation 

on which a directory is built. Records in relations are connected with their bitmaps via 

extendible hashing. Bitmaps and directories are called upper structures of the 

database. 

The search process runs as follows. 

According to a given query we have first to determine in which relations the 

needed data is stored. After that directories of these relations are examined. If we 

found out that the group the given address is representing cannot contain the needed 

data, we do not investigate it any further. A sequential search is performed on the set 

of bitmaps, which may meet query conditions. Using extendible hashing the needed 

records are quickly located. 
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The search time is reduced because 

(1) of a great probability that the needed data is stored in one relation. The need 
for relational algebra operations is decreased. 

(2) even in the realm of one relation the sieving process cuts off the number of 
objects on which the full search is performed. 
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