
Analyzing the Structure of the Coupling Matrix with the Aid 
of the Associated Monotonic System * 

E. N. Kuznetsov UDC 62-506 
The subset of the “most distant” elements in a given set is determined and the classification 
of the elements generated by this subset is considered. The properties of the system of nested 
subsets obtained during the construction of the kernel of the monotonic system based on the 
coupling matrix are investigated. 

1. Introduction 

Practical experience with large-scale applications of automatic classification shows [1-5] 

that, first, the resulting classes widely differ in the mean density of objects and, second, the 

objects are distributed highly nonuniformly within the classes: there are “dense” and “sparse” 

regions, and some objects are very distant from the others, forming separate outlier classes as 

the number of is increased. This naturally leads to the problem of identifying, in a given set 

of coupled elements, the subset of elements, which are the “most isolated” in certain sense. 

Iterative application of this procedure (using the subset of elements from the previous stage 

instead of the original set in the analysis) would produce a family of classifications corre-

sponding to the hierarchy of distances between the objects. 

The article considers the problem of identifying the subset of “most distant” elements in a 

given set of coupled elements described by a coupling matrix. This problem may be consid-

ered as a modification of the well-known problem of automatic classification, since each of 

the identified elements may be treated as a representative of its class. Associating them with 

the nearest representative element does the assignment of the remaining elements to the dif-

ferent classes. 

As in the automatic classification problem, the solution is reduced to extremizing a cer-

tain performance criterion. Our problem, however, has two distinctive features: first, a 

method can be constructed that gives an exact solution, producing the global extremum of the 
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corresponding functional; second, the problem generates a classification with a number of 

classes, which is not known in advance. 

While developing the subset of “maximally distant” elements, the initial set of coupled 

objects acquires a structure in the form of nested subsets partitioning the entire set into strata 

ordered by the strength of the coupling between the corresponding elements. This structure in 

a certain sense represents the most essential information contained in the original coupling 

matrix. 

The concept of monotonic system introduced in [6] is central to the subject of this paper. 

Unlike [6], we consider a particular class of monotonic systems of functions on subsets of 

coupled elements. This concretization leads to a number of new propositions concerning the 

properties of the monotonic system and its subsystems. 

The work consists of four sections. In Sec. 2 we consider the formal construction of the 

monotonic system on a given coupling matrix and present an exact formulation of the prob-

lem of identifying the subset of “maximally distant” elements. Section 3 describes an algo-

rithm for the solution of this problem, and Sec. 4 discusses some properties of the solution, 

which are important for the purpose of interpretation. All theorems are proved in the Appen-

dix. 

2. Monotonic system on the coupling matrix 

Consider a set W  of N  elements with a symmetric coupling matrix N
NkiaA   = . It is 

assumed that all Wk,i ∈  we have 

 0≥kia  , ki ≠ , 0=iia  . (1) 

Consider an arbitrary subset WH ⊆ . On every such subset we define a scalar numerical 

function of its elements 

 ∑∑
∈∈

==
Hk

ki
iHk

ki aa)H,i(   
\

π , Hi ∈∀  , (2) 

where iH \  denotes the subset H  without the element i , and the sum (2) is simplified us-

ing the assumption (1). 
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The number )H,i(π  assigned by this function to the element i  on the subset H  is 

called the weight of the element i  on H . Thus the weight of each element of the subset H  

is equal to the sum of the coupling strength of this element with all the other elements of the 

subset. 

The system )H,i(π  defined on the set of all subsets of the set W  satisfied the condition 

 )H,(π)H,( βαβπ ≤\ , ( )αβαβ ≠∈∀    \H . (3) 

Such a system is called in [6] a monotonic system. 

Let us now define on the set of all subsets of W  a scalar function, which assigned to 

every subset H  a number )H(F  by the following rule: 

 )H,i()H(F
Hi

π min
∈

= , WH ⊆∀  . (4) 

Then the problem of finding the subset of “maximally distant” elements may be stated as 

the problem of finding the global maximum of the functional )H(F : 

 )H,i()H(F)H(F
HiXHXH

* π  min  max max
∈⊆⊆

== . (5) 

The subset WH * ⊆  on which the function )H(F  takes its maximum is called in [6] 

the kernel of the monotonic system. 

Suppose that the initial set W  consists of several clusters of strongly coupled elements, 

where the coupling between different clusters is weak. Then the kernel *H  obtained from (5) 

consists of the “outliers” of these clusters, i.e., the elements with the weakest coupling be-

tween them. 

Figure 1 shows an example of such a set of points on a plane, where the simple Euclidean 

distance is used as the measure of coupling between points i  and j . Circles mark the kernel 

elements of this set. We see that, first, the kernel covers all the clusters that are sufficiently 

distant from the rest and, second, only the farthest outliers from each cluster are included in 

the kernel. 
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Now let *H  be considered as the set of representatives of the different classes of ele-

ments of the initial set W . Then the simplest rule for assigning an arbitrary element W∈α  

to the class WWS ⊂  is given by the relation 

 i*His aa    min αα ∈
= . (6) 

Thus, unlike the traditional concept of representatives as the elements, which are the 

nearest in the mean to all the elements of corresponding classes (i.e., the center of their 

class), the representatives of classes in our case are elements lying far from the center of their 

class. Nevertheless, if the clusters in the initial set are sufficiently compact, both methods 

will apparently identify the same clusters. 1 

3. An algorithm for identifying the subsets of the most distant elements 

The algorithm for the solution of the problem (5) is based on a procedure that constructs a 

so-called defining sequence of elements and isolates the largest kernel from the sequence, as 

proposed in [7]. 

The algorithm is described recursively. 
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from all the rest. 
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1 Step . Set WH =1 . Identify an element W∈1α  such that 

  )W,i()W,(
Xi

παπ  min
∈

=1 . (7) 

 The element 1α  is the first element removed from the set W  and the first 
element of the defining sequence. We denote its weight )W,( 1απ  by 1δ . 

 This number will be used as the initial threshold for the comparison with the 
weights of the other elements in the subset 1α\W  that will be constructed in 
the next step. The comparison will be performed for the “removal” of other 
elements. The comparison threshold will be updated in subsequent steps. 

k Step . After performing )k( 1−  steps, we have the sequence of elements 

121 −k,...,, ααα  2 and the current comparison threshold is some number 1−kδ . 
Let kH  be the set of all the remaining elements of the set X  at the beginning 
of the step k , i.e., those elements that have not been included in the defining 
sequence in the previous steps: 

  121 −= kk ,...,,WH ααα\ . (8) 

 Find an element kα  such that 

  )H,i()H,( kHikk
k

παπ  min
∈

=  (9) 

 and compare its weight with the current threshold 1−kδ . If 

  1−≤ kkk )H,( δαπ  (10) 

 and WNk  =< , go to step ( )1+k , without updating the threshold: 

  1−= kk δδ . (11) 

 Otherwise, i.e., if the inequality (10) is not true, update the threshold before 
continuing to the next step: 

  )H,( kkk απδ = . (12) 

The algorithm stops when the entire initial set W  has been exhausted, i.e., when all the 

elements have been arranged in such a defining sequence. The construction of the defining 

sequence induces the following sequence of subsets H : 

 NH,...,H,H 21 , (13) 

where WH =1 , kkk HH α\=+1 , and kα  is the k -th element of the defining sequence. 

                                                           
2 The angular brackets , , as in [7], denote ordered sets. 
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From the defining sequence N,...,, ααα 21  we select a special subsequence 

pjjj ,...,, ααα
21

 whose elements correspond to the algorithm steps when the comparison 

threshold was updated. We may then write 

 

.
...

,

,

Nppp jjjj

jjjj

jj

...

...

...

δδδδ

δδδδ
δδδδ

====

====

====

++

−++

−

21

121

121

3222

21

 (14) 

To simplify the subsequent analysis, we introduce special notation for this subsequence 

of elements and the associated subsequence of sets: 

 
pjpjj ,...,, αγαγαγγ ====

21 21 , (15) 

 
pjpjj H,...,H,H ==== ΓΓΓΓ

21 21 . (16) 

The numerical sequence of the thresholds is similarly transformed: 

 
pjpjj u,...,u,uu δδδ ====

21 21 . (17) 

Let *H  be the corresponding subset 
pjp H=Γ , i.e., the subset of elements included in 

the defining sequence after the last change of the threshold in the pj -th step, together with 

the element pγ . It is shown in [7] that the function )H(F  attains its global maximum on 

the set *H . Thus *H  is the subset of the “most distant” elements” sought in our problem. 

Computationally, this procedure reduces to successive calculation of the values of the 

function )H,i( kπ , kHi ∈∀   from the known values of the function )H,i( k 1−π . From the 

definition of the function )H,i(π  in (2) we have the following computational formula: 

 
11 −

−= − kikk a)H,i()H,i( αππ  . (18) 

We see from this formula that the algorithm is computationally fairly simple and there-

fore may be applied to large systems of coupled elements. 

The relation (18) also provides a visual expression of the monotonic property (3) of the 

relevant system of functions, since for coupling matrix satisfying the condition (1), the re-
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moval of any element kα  from an arbitrary set subset kH  may only reduce the weights of 

the remaining elements in kH . 

4. The properties of the monotonic system of a coupling matrix 

As we have noted above, an important property of the algorithm is that, simultaneously 

with determining the subset of the “most distant” elements, it produces a system of nested 
subsets jΓ , p,...,,j 21= , the last of which pΓ  is the sought kernel. These sets have spe-

cial properties. 

Two general comments, which follow directly from the construction of the solution algo-

rithm, should be made at this point. First, the sequence of the threshold values generated by 

the algorithm is strictly ordered: 

 pjj u...uu...uu <<<<<< +121 , (19) 

where 

 ∑
∈∈∈

==
jjj k

kiijij a),i(u
ΓΓΓ

Γπ  min min . (20) 

Second, the sets in the sequence Γ  are points of the local extrema (maxima) of the func-

tion F  in the sequence of sets H : 

 )H(F)(F
jj Hj  max

1+⊃⊃
=

ΓΓ
Γ , HH ∈∀  , 121 −= p,...,,j  (21) 

or 

 
11 ++ =<

=≤

jj

jj

u)(F)H(F
u)(F)H(F

Γ
Γ

 
. 

, ,  

121
1

−=

⊃⊃∈∀ +

p,...,,j
HHH jj ΓΓ

 (22) 

Moreover, as noted in [7], the relations (21) and (22) are true for every subset G , 

1+⊃⊃ jj G ΓΓ , which is not necessarily a member of the sequence of subsets H . 

Theorem 1. For every proper subset G , 1+⊃⊃ jj G ΓΓ , we have 

 
11 ++ =<

=≤

jj

jj

u)(F)G(F
u)(F)G(F

Γ
Γ

   b)
   a)

   
.
,

121
1

−=

⊃⊃ +

p,...,,j
G jj ΓΓ

 (23) 
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It follows from Theorem 1 that the sequence of sets Γ  is a sequence of points of strictly 

increasing local maxima of the function F . The last of the maxima in this sequence is also 

the global maximum. 

The function )H(F  thus has a very simple structure: it has a total of WNp  =≤  local 

maxima. This simplicity, which is a consequence of the monotonicity of the system, makes it 

possible to construct a fast algorithm for the solution of the problem (5): the algorithm in this 

case is a simple procedure enumerating all the local maxima of the function )H(F . 

Because of this property, the kernel algorithm of a monotonic system can be used to solve 

the initial problem with additional constraints. Thus, in particular, we can carry out a special 

enumeration of the key elements, which must be included in the resulting subset; in other 

cases, the admissible size of the sought subset may be specified (the desired range). In both 
cases, the solution of the problem is the smallest set jΓ  satisfying the corresponding con-

straint, e.g., the smallest set jΓ  including the specified key elements. 

For purpose of interpretation of the results, it is desirable to have performance criteria 

that provide quantitative measures of the distance of the kernel elements *H  and the homo-
geneity of their relative distribution. Two such criteria are the functions )(F pΓ  and 

)(Q pΓ , respectively, which are defined as follows: 

 ∑
∈∈

=
pp k

kiip a)(F
ΓΓ

Γ   min , (24) 

 ∑
∈∈⊂

=
Hk

kiHiHp a)(Q
pp

   max   max
\ΓΓ

Γ , HH ∈ , ( pH Γ⊂ , ∅≠Hp \Γ  ). (25) 

As we have noted, )(F pΓ  identifies a special element, the center of the kernel, whereas 

)(Q pΓ  specifies proper part 'H  of the kernel pΓ , and from the monotonicity property it 

follows that the element H'p \Γα ∈ , such that ∑ ∑
∈ ∈∈

=
'Hk 'Hk

k'Hik amaxa
p

    αΓα \
 immediately pre-

cedes the first element of 'H  in the defining sequence. 

The usefulness of )(F pΓ  and )(Q pΓ  as the distance measure of the kernel elements 

and the measure of homogeneity of their relative distribution follows from the basic proper-

ties, as formulated in Theorem 2 and 3. 
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Theorem 2. The measure of kernel homogeneity does not exceed the threshold value 
)(Fu pp Γ= : 

 ∑
∈∈

≤
pp k

kiip a)(Q
ΓΓ

Γ    min . (26) 

Theorem 3. The minimum sum of the coupling strength between a given element of the 
set and all the other elements of the set, i.e., the threshold value )(Fu pp Γ= , is not less 

than the maximum coupling strength between any two elements of the set X : 

 kiWk,ip a)(F   max
∈

≥Γ . (27) 

Unlike Theorem 2, which in a certain sense guarantees “density” of the set pΓ , Theo-

rem 3 imposes an essential lower bound on the mean coupling strength, i.e., on the “distance” 

of the elements in this set. 

The measures of distance and homogeneity (density) introduces in Theorems 2 and 3 for 

the elements of the kernel (the set on which the function )H(F  has its global maximum) 

can be generalized to evaluate all the local extrema of this function. The corresponding crite-

ria are similarly defined: 

∑
∈∈

=
jj k

kiij a)(F
ΓΓ

Γ   min , 121 −= p,...,,j , (28) 

∑
∈∈

=
Hk

kiHiHj a)(Q
j

   max   max
\Γ

Γ , 1+⊃⊃ jj H ΓΓ , HH ∈ , 121 −= p,...,,j . (29) 

Theorem 4. For every set jΓ , 

 ∑
∈∈

≤
jj k

kiij a)(Q
ΓΓ

Γ   min , 121 −= p,...,,j . (30) 

Theorem 5. For every set jΓ , the minimal sum of the coupling strength of a given ele-

ment with all the other elements of the set, i.e., the threshold value )(Fu jj Γ= , is not less 

that the maximum coupling strength between any two elements i  and k , which do not be-

long to 1+jΓ , i.e., 1+∈ jWk,i Γ\ , 

 kiWk,ij a)(F
j

   max
1+∈

≥
Γ

Γ
\

, 121 −= p,...,,j . (31) 
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Theorems 4 and 5 justify using the local extrema of the function F , i.e., the sets jΓ , 

121 −= p,...,,j , as an acceptable solution for the subset of the “most distant” elements in 

problems with additional constraints. The measures of “distance” and homogeneity of the 

elements introduced in these theorems and their comparison with the corresponding criteria 

for the global maximum indicate to what extent the ideal solution is distorted by the addi-

tional constraints. 

In conclusion, let us consider Theorem 6, which establishes that sets jΓ , 

121 −= p,...,,j , are in a certain sense also the local extrema of the functional defined as the 

mean coupling strength of the elements in the subset. 

Theorem 6. Let  

 ( ) ∑
∈

⋅
−⋅

=
Hk,i

kia
HH

)H(f   1
1

, WH ⊆∀  . (32) 

Then the following propositions are true: 

A. Every subset jH Γ⊂ , 121 −= p,...,,j  with 1+= jH Γ  elements, which differs 

from 1+jΓ  at most in one element, satisfies the inequality 

 ).(f)H(f j 1+< Γ  (33) 

B. Every subset jH Γ⊂ , 121 −= p,...,,j  with ( )11 += +jH Γ  elements, which con-

tains the set 1+jΓ , i.e., 1+⊃ jH Γ , also satisfies the inequality (33). 

The monotonicity properties of the system based on the coupling matrix provide rich op-

portunities for meaningful interpretation. 

Remark. The formal statement of the problem for the subset of the “most distant” ele-

ments and the corresponding solution algorithm are preserved when the element kia   of the 

coupling matrix is interpreted as a measure of proximity or goodness of fit (and not as a 

measure of distance). The relevant problem in this case is to isolate a subset of coupled ele-

ments from the set X , which are the “nearest” in the sense of (5). 
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APPENDIX 

Proof of Theorem 1. The validity of inequality a) is proved by contradiction. 

Suppose there is a subset G , 1+⊃⊃ jj G ΓΓ  such that 

 jj u)(F)G(F => Γ . (A.1) 

In the sequence H  there is a minimal subset HHt ∈ , jtH Γ⊆ , such that GHt ⊇ . 

Clearly, Gt ∈α , where tt H∈α , 1+∉ tt Hα . 

Let Gg ∈α  be the minimal-weight element in G , i.e., 

 )G,i()G,(
Gig παπ  min

∈
= . (A.2) 

Then 
 )G(F)G,()G,( gt =≥ απαπ . (A.3) 

From the monotonicity property we have 

 )G,()H,( gtt απαπ ≥ , since GHt ⊇ . (A.4) 

Hence, using (A.1) and (A.3), we obtain 

 jjtt u)(F)H,( => Γαπ . (A.5) 

On the other hand, from the construction of the defining sequence, for jtH Γ⊆ , 

tt H∈α , 1+∉ tt Hα  we have 

 jtt u)H,( ≤απ . (A.6) 

The last two inequalities contradict one another, which proves the inequality a). 

The validity of the inequality b) in Theorem 1 follows from relations (19),(20) and the 

inequality a). ! 

Proof of Theorem 2. Suppose the proposition of Theorem 2 is false, i.e., there is an ele-
ment Hp \Γα ∈  such that 

 ∑ ∑
∈ ∈∈

>
Hk k

kiiki
pp
aa

ΓΓ    min . (A.7) 
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The element α  belongs to Hp \Γ , i.e., it does not belong to H : H∉α . Let tH  be the 

smallest subset in the sequence H  containing the element α , i.e., tH∈α , but H∉α . 

Clearly, HHt ⊃ . By (10) the elimination of α  from tH  is possible only if 

pt u)H,( ≤απ , i.e., 

 p
Hk

ki ua
t

≤∑
∈

 , (A.8) 

since pu  is the last threshold value, which is not updated until the end. Since HHt ⊃ , we 

have 

 ∑ ∑
∈ ∈

≤
Hk Hk

kiki
t

aa   . (A.9) 

Hence 

 ∑ ∑
∈ ∈∈

≤
Hk k

kiiki
pp
aa

ΓΓ    min . (A.10) 

The inequality (A.10) contradicts the assumption (A.7). ! 

Proof of the Theorem 3. The function )H(F  attains its global maximum on *
p H=Γ . 

i.e., 

 )H(F)H(F * ≥  WH ⊆∀  . (A.11) 

Therefore, this inequality holds for all two-element subsets in W , including some 
{ }  βα , , such that kiWk,i

amaxa    
∈

=βα . Now since 

 { }
{ }

{ } βαβα
βαπβα    

   min  a),,i(),(F
,i

==
∈

, (A.12) 

the truth of the inequality (27) is established. 

Theorems 4 and 5 are proved along the same lines as Theorem 2 and 3. 

Proof of the Theorem 6. Both propositions of Theorem 6 follow from Theorem 4 and the 

inequality (19). Indeed, 

 ∑ ∑
+ +++ ∈ ∈∈+∈

=<≤
1 111

1
j jjjj k k

kiijjkii
auua

Γ ΓΓΓΓ   min max
\

. (A.13) 
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The inequality (A.13) means that even if the element 11 ++ ∈ jj Γγ  with the minimal sum 

of coupling strengths with the elements of the set 1+jΓ  is replaced by the element 

1+∈ jj ΓΓα \  with the maximal sum of coupling strengths with the elements of 1+jΓ , the 

total sum of coupling strengths of the resulting subset, and hence the average coupling 

strength between pairs of elements, may only diminish (proposition A). 

Adding to the subset 1+jΓ  any of elements from 1+jj ΓΓ \  will increase the total sum of 

coupling strength between the elements of the subset jH Γ⊂ , 11 += +jH Γ , but neverthe-

less decrease the average coupling strength, which also follows from the inequality (A.13) 

(proposition B). ! 
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