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A Study of Infraspecific Groups  
of the Baltic East Coast Autumn Herring by  

new Method based on Cluster Analysis 

Positions of the au-
tumn herring sub-
groups differentiated 
by the method de-
scribed.  

Figure 1 

 

 

 

E. Ojaveer, Estonian Laboratory of Marine Ichthyology (1975) 

“In the Baltic Sea the autumn spawning herring forms a smaller number of 
groups than the spring herring does. This is probably connected with the differ-
ent location of their spawning grounds. Spawning grounds of the spring her-
ring are concentrated in favorable sites near the coast (in gulf, estuaries, etc.) 
while between such spawning centers gaps occur usually. Contrary to it, in 
most parts of the Baltic spawning places of the autumn herring form a continu-
ous chain situated in the open sea. Therefore, differences in environment condi-
tions between the autumn spawning grounds of neighboring areas are small 
and in large districts the characters of the autumn herring do not reveal essen-
tial differences. For instance, there is no significant difference between the 
autumns herrings caught on various grounds off the Polish coasts. The autumn 
herring of the Swedish Baltic coasts can be divided into four groups (that of the 
Gulf of Bothnia, that of the Bothnia Sea, the herring of the Swedish east coast 
and that of the Swedish south coast), between which a gradual transition oc-
curs.” 

Appendix 1, J. Mullat (1975), Tallinn Technical University 

While cluster is a concept in common usage, there is currently no consensus 

on its exact definition. There are many intuitive, often contradicting, ideas on 

the meaning of cluster. Consequently, it is difficult to develop exact mathe-
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matical formulation of the cluster separation task. Yet, several authors are of 

view that clustering techniques are already well established, suggesting that the 

focus should be on increasing the accuracy of data analysis. The available ex-

amples of data clustering tend to be rather badly structured, whereas application 

of the formal techniques on such data fails to yield results when the classifica-

tion is known a priori. These issues are indicative of the fundamental deficien-

cies inherent in many numerical taxonomy techniques. 

Following the standard nomenclature, a vector of measurements can de-

scribe every object kx,...,x,x 21 . Thus, for every pair of objects iE  and 

jE  a distance j id  between those objects can be defined as 

     22

22

2

11 k jk i j i j ij i xx...xxxxd   (1) 

However, it should be noted that all measurements are usually standardized 

beforehand. 

Applying Eq. (1) on N  objects yields a full matrix of distances 
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Authors of many empirical studies employ methods utilizing the full matrix 

of distances as a means of identifying clusters on the set  ki E,...,E,...,E1 . 

In this section, we describe a new and highly effective clustering method, 

underpinned by some ideas offered by the graph theory. As the first step in our 

novel approach, we emphasize that, for elucidating the structure of the system 

of objects, knowledge of all elements of the matrix of distances given above is 

rarely needed. We further posit that, for every object, it is sufficient to consider 

no more than M  of its nearest neighbors. 

To explicate this strategy, let us consider a system of 9 objects (Fig. 2) with 

their interconnections — edges. The matrix of nearest neighbors for such a 

graph is given by: 
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5(1) 6(1) 3(2) 0 0 0 

4(1) 3(2) 7(3) 0 0 0 

4(1) 5(1) 1(2) 2(2) 0 0 

2(1) 3(1) 5(1) 7(3) 0 0 

1(1) 3(1) 4(1) 6(1) 7(3) 0 

1(1) 5(1) 7(3) 0 0 0 

2(3) 4(3) 5(3) 6(3) 8(3) 9(3) 

7(3) 9(3) 0 0 0 0 

MND =

7(3) 8(3) 0 0 0 0 

 

It can be easily verified that each row i  of that matrix contains a list of ob-

jects j  directly connected with a given object iE , with the distances j id  

given in parentheses. Based on this argument, henceforth, we will denote the 

matrix of nearest neighbor distances by MND. 

In most cases, having data pertaining to about 8-10 nearest neighbors is suf-

ficient. This is highly important for computation, where the goal is to minimize 

the required memory space. By applying this method on, e.g., the case of 1,000 

objects, only 10,000 memory locations would be needed, which is a significant 

saving relative to the 500,000 required when the full matrix is processed. 

We will use the MND defined above as a starting point to create some use-

ful mathematical constructs. 

Figure 2 
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Let W  be the list of edges (pairs of objects) in the MND. For every edge 

 b,ae  , a subset 
a
bW  of the list W  can be defined as follows. 

Definition 1. Subset 
a
bW  of W  represents a proximity space of edge 

 b,a  if 

a) for every pair of objects x  and y , which are connected with at least one 

edge in 
a
bW , there exists a path joining x  and y , and 

b) every edge that is a member of that path belongs to the subset 
a
bW . 

According to the graph theory postulates, proximity space is a sub-graph 

connected with the edge  b,a . 

Example. Let us consider the edge  54,  shown in Fig. 1. According to the 

aforementioned rules, its proximity space, denoted as 
4

5W , is the sub-graph 

                 5,4,6,5,5,1,4,2,7,5,7,4,5,3,4,3 W4
5  . 

Definition 2. The system of proximity spaces is referred to, as the proximity 

structure if for each edge  b,aw   there exists a nonempty proximity space 
a
bW  in the system. 

Sometimes it is useful to exclude the edge  b,a  from the proximity space 
a
bW . In line with the Venn diagram annotation, this exclusion is denoted as 

 b,aWa
b \ , whereby the resulting subset can be referred to as a reduced 

proximity space. 

In the preceding discussion, for every edge  b,a , only the value of the dis-

tance  b,ad  between  b,a  was taken into account. In what follows, it is 

useful to introduce a new notation. For example, it is beneficial to assign a real 
number (credential  ), which is different from the distance, to every edge on 
the graph. For example, let us define the credential of every edge in the dia-
gram shown in Fig. 1 as 

      y,xry,xdy,x  . 

For example,   237,4  ,   138,7   on the edge  y,x , where 

 y,xd  is the Euclidean distance (1) between y,x  and  y,xr ;  y,xr  is 

the number of triangles that can be built around  y,x . 
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Let us further assume that a proximity structure L  of a graph W  is 

known and that )x(f  is a real function. 

Definition 3. The function )(f a
b   defined for all credentials of the edges 

in 
a
bW  is called the influence function of the proximity structure L  if the 

following holds    y,x)y,x(f b
a   for each    b,aWy,x a

b \ , 

where  y,x  is the credential of the edge  y,x .  

In other words, for every edge  y,x , we can find a new credential in the 

reduced proximity space  b,aWa
b \  

    )y,x(fy,x' a
b  .

To demonstrate the benefit of introducing the influence function, let us 
again consider the diagram depicted in Fig. 1. Graphically, the influence func-
tion represents the value of the number of triangles after the elimination of the 

edge   a
bWb,a   from the list 

a
bW . Using the set 

4
5W  as an example, this 

corresponds to 

           101rd11rdf)4,3(f 34343434
4

5
4

5  ; 

           101rd01rdf)4,3(f 34345656
4

5
4

5  ; 

           303rd13rdf)4,3(f 34344747
4

5
4

5  . 

 5(3) 6(2) 3(3) 0 0 0
 4(3) 3(3) 7(4) 0 0 0
 4(3) 5(3) 1(3) 2(3) 0 0
 2(3) 3(3) 5(3) 7(5) 0 0
MNW= 1(3) 3(3) 4(3) 6(3) 7(5) 0
 1(2) 5(3) 7(4) 0 0 0
 2(4) 4(5) 5(5) 6(4) 8(4) 9(4)
 7(4) 9(4) 0 0 0 0
 7(4) 8(4) 0 0 0 0

It is evident that knowledge of the influence function of an edge allows us 
to easily find the set of new credentials for an entire subset WH . Let us 

consider the set HWH \  and arrange its edges in some order 

,...e,e 21 . Applying the steps shown above, we can find the proximity 

spaces of the edges in ,...e,e 21  and apply Eq. (3) recursively. 
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Using the information delineated thus far, we can now introduce our algo-

rithm, the aim of which is to identify the data structure. 

At this point, we can assume that steps pertaining to the selection of the 

proximity structure and the influence function have been completed. Thus, we 

can proceed through the algorithm as follows: 

A1. Find the edge with the minimum credential and store its value. 

A2. Eliminate the edge from the list of all edges and compute the creden-

tials for proximity spaces of the minimal edge using the recursive 

procedure (3). 

A3. Traverse through the list of edges and identify the first edge with the 

credential less or equal to the stored credential. Return to A2 to 

eliminate that edge. If no such edge exists, proceed to A4. 

A4. Check whether there are any further edges in W . If yes, return to 

A1, otherwise terminate the calculations. 

Performance of the algorithm will be demonstrated by applying the afore-

mentioned steps to the graph shown in Fig. 1. 

First, the credentials for all edges should be defined using the following ex-

pression: 

      y,xry,xdy,x  . 

To do so, we must compute the matrix of credentials using the matrix of 

distances (2). 

We will demonstrate all steps of the algorithm described above. 

A1. Minimal edge is  6,1  and the associated credential is   26,1  . To 

store its value, let 2u  . 

A2. We eliminate the edge  6,1  from the list W  and therefore have to 

change the credentials of   47,6'  : 

  6,1W1
6 \ :   33,1'  ;   25,1'  ;   26,5'  . 

A3. Proceeding through the list, we encounter the edge  51,  as the first 

edge with the credential less or equal to u . Now, we return to step A2. 

After 9 steps with 2u , we have the following sequence of edges: 

                  6 ,5 , 5 ,4 ,3 ,2 , 4 ,2 , 4 ,3 , 5 ,3 , 3 ,1 , 5 ,1 , 6 ,1 . 
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Now, we consider the case 3u , and after applying the preceding steps, 

we obtain         7 ,6 , 7 ,5 , 7 ,4 , 7 ,2 . Finally, using 4u  yields 

      9 ,8 , 9 ,7 , 8 ,7 . 

It can be easily verified that those ordered lists of edges provide accurate 
representation of our graph’s structure. 

For graphical output, we can utilize the ordered edges to construct a con-
nected tree (a tree is a graph without circles). 

For the example given above, we can construct the tree using the ordered 

lists of edges, while excluding all edges  b,a  if both their end points, a  and 

b , are already members of the list. This approach results in the sequence  

                 9 ,7 ,8 ,7 , 7 ,2 , 4 ,2 , 4 ,3 , 3 ,1 , 5 ,1 , 6 ,1  

based on which the tree in Fig. 3 can be constructed. 

. 

Using this simplified diagram, relative position of any object in the tree 

can be established by considering the number )y,x(S  of steps needed to 

reach the point y  from the point x  on the tree (e.g., 3)2,1(S  , 

5)8,1(S  ). Hence, for every object x , we can identify another object from 

which the maximum number of steps is required to reach x. For example, to 
identify the object at the top of the tree, we will take the object for which that 
maximum is minimum. Using real data, and applying these rules, we obtain the 
tree shown in Fig. 1. 
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