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KOHTPMOHOTOHHbBLIE CUCTEMbI B AHAJITU3E CTPYKTYPbI

MHOIOMEPHbIX PACI'IPEHEJ'IEHVIVI
WU. 3. MYNNAT
(Tannun)

CraBuTcs 3a1a4a BBIIEICHNS CTYIIEHWI B MHOTOMEPHOM NMPOCTPAHCTBE H3MEPEHMIT Ha OCHOBE
BEKTOPHOTO KpHTepHs KauecTBa. [l IMOKMCKAa PEIICHUH HCIIOIB3yeTCsl CHelMabHas IapaMe-
Tpu3auus QyHKIUHA, IpU KOTOPOH C yBEIMYCHHEM 3HAYCHUH IapaMeTpOB 3HAauCHHE (yHKUIUH BO
BCEH 00JaCTH ONPEIENICHNS YMCHBIIIACTCS.

1. BBengenue

AHanu3 CTPYKTYpBl paclpesieieHus] MIIOTHOCTH HW3MEPEHHH B N-MEPHOM
HPOCTPAaHCTBE — TPAAULMOHHAS TEeMaTHKa HUCCIENOBaHHH B TaKUX MPHKIal-
HBIX 00JIacTAX, KaK IJIaHWPOBaHHE dKcrepuMmenTa [1], aHamm3 u3oOpaxeHuit

[2], ananu3 npuHATHs perienuit [3], paco3naBanue o0paszos [4] U T. 1.

Ha conepxarenbHOM ypoBHE CTpPYKTypa pacrpejeieHuss oObIYHO Tpen-
CTaBJISIETCS COBOKYIMHOCTBIO CTYIICHHI, KOTOPbIC WHOTJA HA3bIBAIOTCS TAKKE
MoziamH [S]. AHanu3 mogoOHOM CTPYKTYPBI, €CIIH HE SIBHO, TO KOCBEHHO, ITOYTH
BCer/la CBOJWUTCS K BapUAIlMOHHOW 3ajJa4ye ONTHUMHU3AIMA — MaKCHUMH3alUH
KaKoOro-JIM00 CKaJSIPHOTO KPUTEpHs KauyeCTBAa, OLICHUBAIOIICTO BBIICISEMbIS
crymeHus. BMecTo ckalsipHOro B JaHHOW paboTe MCHOJIb3YyeTCs BEKTOPHBIH
KPUTEPHA, & B OCHOBY IOHSITHS ONTHMAJIbHOCTH TOJO0XEHO TaK Ha3bIBacMOe
PaBHOBECHOE COCTOSTHUE B cMbIciie Hama [6].

[IpaBOMEepHOCTh TOAXO/a C MO3WIUK COCTOSIHUS PaBHOBECHS K aHAIU3Y
CTPYKTYPBI paclpesieieHus IIIOTHOCTH U3MEPEHUH B N-MEPHOM IPOCTPAHCTBE
OOBSCHSIETCS] TEM, YTO 3/IECh MO CYIIECTBY MPOUCXOJHUT 3aMeHa OJHOW MHOTO-
MEpPHOII MHOTUMH «IIOYTH OJZHOMEPHBIMH» 3aJadyaMd B MPOEKLUUSAX Ha OCH
koopauHaT. Ha KakmoH ocH CrylieHHe BBIACTSIETCS TaK, 4YTO OCH
«YBSI3BIBAIOTCS MEXAY COOOI CTPOTrO OmpeleNieHHBIM 00pa3oM: CryLIeHHue Ha
JAHHOW OCH HEJB3sl «CIBUHYTH B CTOPOHY» 0€3 Kakoro-mubo yXyIIMCHUS
CTYILIEHUS Ha APYTHX OCSAX B CMBICIE PacCMaTPHUBAEMOI0 KPUTEpUs IIpU ycIo-
BUH, YTO 3TH JIPyTHE YKe GUKCUPOBAHBIL.

[IpenMymiecTBO MPEIOKEHHOTO MOJXO0/a HE HCUEPIBIBACTCS YKa3aHHOU
«TE€XHUYECKOH MOAPOOHOCTHIO» 3aMEHbI OJJHOTO MHOTOMEPHOTO IPOCTPaHCTBa
OJTHOMEPHBIMH MPOEKIUsIMH. JIeJI0 B TOM, YTO COCTOSTHHE PaBHOBECHSI, BbIe-
JsieMoe TpH TMOMOILIM HCIIONIB3yeMOr0 BEKTOPHOTO KpPUTEpHs, MapaMeTpH-
3UpYETCsl TaK HA3bIBAEMBIMU ITOPOTaMH, KOTOPHIE 33Jal0T YPOBHHU IUIOTHOCTH
crymennii. [To kpaitHeil Mepe B HEKOTOPBIX YAaCTHBIX CIy4asX COCTOSHHE pa-
BHOBECHS KaK PEIICHNE CUCTEMBbl ypPaBHEHUH MOXXHO aHAJIMTHYECKH BBIPA3UTh
B ¢opme PyHKUUI TOPOTOB U TEM CaMbIM HOJHOCTHIO 0003PEThH BbHIIENIAEMbIE
CTYILIEHUS B CIIEKTPE BO3MOXKHBIX YPOBHEH IIIOTHOCTH.
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Counter Monotonic Systems in the Analysis of
the Structure of Multivariate Distributions

Abstract. In the context provided, a multivariate space refers to a space where data
points are represented by multiple variables or dimensions. For instance, if you're meas-
uring several characteristics of an object or a process, each characteristic would repre-
sent a dimension in this multivariate space. Now, the problem being discussed is about
distinguishing condensations within this multivariate space. Condensations here likely
refer to clusters or groupings of data points that share similar characteristics or patterns.
The approach described involves using a qualitative vector criterion, which means using
some sort of criteria or rules based on vectors (which represent directions or magnitudes
in this multivariate space) to distinguish these condensations. This criterion could be
based on factors such as distances between points, angles between vectors, or other
mathematical relationships. The solution proposed involves parameterizing functions in
a special way. Parameterization means expressing functions in terms of parameters,
which are variables that can take on different values. These functions are designed such
that their values decrease across all regions of the defined multivariate space inversely
proportional to the values of the parameters. In simpler terms, this means that the func-
tions are structured in a way that they decrease in value as the parameters increase, and
this decrease happens consistently across all regions of the multivariate space. This
parameterization likely helps in identifying and distinguishing different condensations or
clusters within the multivariate data by providing a systematic way to evaluate their
characteristics.

Keywords: monotonic; distributions; equilibrium; cluster
1. INTRODUCTION

The analysis of the structure of the probability density function of measure-
ments in an n -dimensional space is a traditional topic of investigation in such
applied fields as experimental design (Finney, 1964), image analysis (Rosenfeld,
1969), the analysis of decision making (Fishburn, 1970), pattern recognition
(Aizerman et al, 1970), etc...

At a conceptual level, a distribution structure is usually represented by a set
of data clusters, sometimes called modes (Zagoruiko and Zaslavskaya, 1968).
The analysis of such a structure is indirectly, if not explicitly, usually reduced
to the problem of variational optimization. That is, maximizing some scalar
performance metrics that characterize the identified clusters. Instead of a scalar
performance index, in this article we use a vector index and base the concept of
optimality on the so-called Nash equilibrium state (Owen, 1968).

Approaching the analysis of the structure of a measurement density function
in N -dimensional space, our standpoint is the equilibrium state concept. It is
justified by the fact that, essentially, what happens, is the replacement here of a
single multidimensional problem by many “almost one-dimensional” problems
in projections onto the coordinate axes. On each axis a cluster is delineated in
such a way as to “bind” the axes together in a rigorously defined way. So, ex-
posed to such a “bind” the cluster on a given axis cannot be “nudged” without
in some measure deteriorating itself on the other axes in the sense of investi-
gated performance index, subject to the condition that these others are fixed.
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The superiority of the proposed approach is not restricted to the indicated
“technical detail” of replacing one multidimensional space by one-dimensional
projections. Indeed, an equilibrium state identified by means of the given vector
index is parameterized by so-called thresholds, which satisfy the density levels
of the clusters. In certain special cases, at any rate, an equilibrium state as the
solution of a system of equations can be expressed analytically in the form of
threshold functions, whereupon the identified clusters can be fully scanned in
the spectrum of possible density levels.

The proposed theory for the identification of clusters of the probability den-
sity of measurements in 1N -dimensional space is set forth in two parts. In the
first part (sec.2) the theory is not taken beyond the scope of customary multi-
variate functions and it concludes with a system equations, namely the system
whose solution in the form of threshold functions makes it possible to scan the
identified clusters. In the second part (Sec.3) the theory now rests on a more
abundant class of measurable functions specified by the class of sets repre-
sented on the coordinate axes by at most countable set of unions or intersec-
tions of segments. Overall the construction described in this part is so-called
counter-monotonic system; actually, the first part on multi-parameter counter-
monotonic systems is also discussed in these terms (special case).

The fundamental result of the second part does not differ, in any way, from
the form of the system of equations in the first part; the essential difference is in
the space of admissible solutions. Whereas in the system of equations of the
first part the solution is a numerical vector, in the second part it is a set of
measurable sets containing the sought-after measurable density clusters. As the
solution of the system of equations, the set of measurable sets serves as a fixed
point of special kind mapping of subsets of multidimensional space. This par-
ticular feature is utilized in an iterative solving procedure.

2. COUNTER-MONOTONIC SYSTEMS OVER
A FAMILY OF PARAMETERS

Here a monotonic system represents first a one-parameter and then a multi-
parameter family of functions defined on real axis. This type of representation
is a special case of a more general monotonic system described in the next
section.

We consider a one-parameter family of functions m(x;h) defined on the

real axis, where h is a parameter. For definiteness, we assume that an individ-
ual copy 7 of the indicated family is a function that can be taken as an integral
with respect to x and differentiable with respect to h . The family of functions
T is said to be counter-monotonic if it obeys the following condition: for any

pair of quantities / and g such that / < g the inequality

n(x;¢) = m(x;g) holds for any x .
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The specification of a multi-parameter family of functions 7 is reducible to
the following scheme. We replace the one function 7 by a vector function

= <7t],7t2,...,nn>, each j-th component of which is a copy of the function
depending now on n parameters h,h ,..,h ,ie., m =m(x;h,h,.,h).
We wrote down the counter-monotonicity condition for any pair of vectors
l= <€1,€2,...,€“> and g =<g],g2,...,g“> such that ¢/, <g , k=(1,2,...,n) in
the form of N inequalities w (x;¢,0,,....,¢ )= m (X;g,g,,..8,). We also
note that this condition rigorously associates with family of vector functions a

component-wise partial ordering of vector parameters.

We give special attention to the case of a so-called de-coupled multi-
parameter family of functions 7. The family 7 arrange de-coupled functions
if the j-th component of the vector function T does not depend on the j-th
component of the vector of parameters h, i.e., on hj. Therefore, the function
n of a de-coupled multi-parameter family is written in the form
n,(x,h,...,h_,h ,..h) (j=1,..,n).

12

We now return to the original problem of analyzing a multi-modal empirical
distribution in multidimensional space. We first investigate the case of one axis
probability distribution of only one random variable (univariate distribution).

Let p(x) be the probability density function of points in the x-axis. For the
counter-monotonic family © we can choose, for example, the functions
n(x;h) =p(x)". It is easy verified that the counter-monotonicity condition is
satisfied.

We consider the following variational problem. With respect to an exter-
nally specified threshold u® (0 <u’<1) let it be necessary to maximize the
functional

I(h) = ]h[n(x;h)—w]-dx.

It is clear that for small h the quantity I[1(h) will be small because of the
narrow interval of integration, while for the large h it will be small by the
counter-monotonicity condition. Consequently, the value of max, I1(h) will

necessarily be attained for certain finite nonzero h°.

It is easy to see that if p(X) is a unique function of the density of modes
with zero mathematical expectation, then maximizing the functional IT(h)
implies identifying the interval on the axis corresponding to the density p(x)
concentration. But if p(x) has a more complex form, then the maximum
[T(h) determines the interval in which the "essential part” in a certain sense of

the density function p(x) is concentrated.
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Directly from the form of the function I1(h) we derive necessary condition

for the local maximum (the zero equation of the derivative with respect to h :

)
S_hn(h) =0 or, in expanded form, the equation

n(~h;h) +n(h;h) + [n(x;y) ., dx =2u". (1)

The root of the given equation will necessarily contain one at which T1(h)

attains a global maximum. We have thus done with the problem: we found the
central cluster points of the density function on one axis in terms of a counter-
monotonic family of functions.

To find the central clusters of a multivariate distribution in 7 -dimensional
space we invoke the notion of a multi-parameter counter-monotonic family of
functions TU. Let the family of functions 7T in vector form be written, say, in

the form m,(x;h,,....h,)=p,(x)", where h=>"" h,, and pj(X) is a pro-

jection of the multivariate distribution on the axis ]-th axis. In the stated sense

the goodness of the delineated central cluster is evaluated by the multivariate
(vector) performance index IT = <1_Il,...,l_ln>, where

I1,(hh,,...h,)= J.[ch(x;hl,...,hn)—uj]-dx @)

and u, is the component of the corresponding externally specified multidimen-
sional threshold vector u: u= <u|,u2,...,un> . As in the one-dimensional case,
of course, it is meaningful to use the given functional only distributions pj(x)
with zero expectation.

Once the goodness of a delineated cluster has been evaluated by the vector
index, it must be decided, based on standard (Becker and McClintock, 1967)
vector optimization principles, what is an acceptable cluster. In this connection
it is desirable to indicate simultaneously a procedure for finding an extremal
point in the space of parameters. It turns out that for so-called Nash-optimal

Equilibrium State there is a simple technique for finding solutions at least in de-
coupled family of counter-monotonic functions 7T .

En equilibrium situation (Nash point) in the parameter space
h= <h1,...,h“> with indices IT; is defined as a point h" = <hr,h;,...,h:> such

that for every ] the inequality

M (h,...,h° b b, b)) < TT(h,.. b, b))

12 o n
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holds for any value of hj. In other words, if there are no sensible bases in the
sense of index II, on the one (j-th) axis, then the equilibrium situation is
shifted with respect to the parameter h , subject to the condition that the quan-

tities h;, k # j, are fixed on all other axes.

Clearly, a necessary condition at a Nash point in the parameter space (as in
the one-dimensional case) is that the partial derivatives tend to zero, i.e., the n

0 . .
equalities Tnj(h, ,--,11_) =0 must hold. The sufficient condition comprises

]
2

the N inequalities

M (h,.,h))<0.

2
J

An essential issue here, however, is the fact that the necessary condition
(equalities) acquires a simpler form for de-coupled family of counter-
monotonic functions than in the general case. Thus, by the decoupling of the

family T the partial derivative is identically zero, and the system of
j

equations, see (1) by analogy, with respect to the sought-after point h™ is re-

ducible to the form

n(-hh,,.h b

oheh)+m(hshy,h b h ) =20 3)

jH12°

Now the sufficient condition is satisfied automatically for any solution h’
of Egs. (3).

In conclusion we write out the system of equations for two special cases of
a de-coupled family of counter-monotonic functions Tt .

1. Let n(x;h,....h ,h ... h )= pj(X)HJ , where
c= h1 + h2 +...+ hn . The system of equations (3) is reducible to

ot

the form p,(~h,)™" +p,(h))™" =2u,, j=1n.

2. Lettherole of m (x;h,,....,h _,h_,..h ) be taken by the
p,(x)"..p,,(X)" p,,(x)"...p,(x)" function.
The system of equations (3) for finding a solution, i.e., an equilibrium situa-
tion (Nash point) h", is written
p(-h)/p,(~h)" +p(h))/p (h)" =2u, (j=1Ln),

where p(x)=p,(X)"p,(x)"...p,(x)" is the product of univariate density
functions.
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We conclude this section with an important observation affecting the vector
of thresholds u=<u,,u,,...,u, >. By straightforward reasoning we infer that

each component h; of the equilibrium situation h” is a function of thresholds
and h" can be represented by a vector function of thresholds in the form
h =h (u,,u,,...,u,). If the solution of the system of equations (3) can be
expressed analytically, then prolific possibilities are afforded for scanning the
equilibrium situations in the parameter space and, accordingly, selecting an
“acceptable” cluster in the spectrum of existing densities of measurements in a
multidimensional space of thresholds. A similar approach can be used when

solutions of Egs. (3) are sought by numerical methods.

3. COUNTER-MONOTONIC SYSTEMS OVER A FAMILY OF SEGMENTS

A multi-parameter family of counter-monotonic functions used for the analysis
of multivariate distributions, unfortunately, has one substantial drawback. Gen-

erally speaking, there is no way to guarantee the identification of homogeneous
distribution clusters in projection onto the j-th axis, because the segment

[—hj,hj] can contain several distinct modes. On the other hand, it is some-
times desirable to identify modes by merely indicating a family of segments
containing each mode separately. The construction proposed below enlarges the
possibilities for the solution of such a problem by augmenting the counter-

monotonic systems of the proceeding section in natural way.

Thus, on real axis we consider subsets represented by at most countable set
of operations of union, intersection, and difference of segments. The class of all

such subsets is denoted by B, and each representative subset by He B
(which we call a B set) is distinguished from like sets by length |l (by meas-

ure zero). A set L is congruent with G (G =L) if the measure of the sym-
metric difference GAL is equal to zero (WGAL =0); a set L is contained in
G (L < G) with respect to measure W if uG\L =0. A measure on the real

axis, being an additive function of sets (the length), is determined by taking to
the limit the length of the sets in the set of unions, intersections, and differences
of segments forming the B set. Then set-theoretic operations over B sets will
be understood to mean up to measure zero. By convention, all B sets of meas-

ure zero are indistinguishable.
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We associate with every B set H a nonnegative function m(x;H), which

is Borel measurable (or simply measurable) and whose domain of definition is
on the real axis.' In other words, in contrast with the one-parameter family of
counter-monotonic functions of the preceding section, the parameter h is now
generalized, namely, it is extended to the B set H. As before, we say that a
family of measurable functions 7 is counter-monotonic if it obeys the follow-
ing condition: for any pair of sets L and G such that L € G the inequality

n(x;L) > n(x;G)
holds for any X .

The scheme of specification of a multi-parameter family of functions is
analogous to the previous situation. In place of a scalar function © we now
specify a vector function 7= <Tt, , nz,...,nn> , each j-th component of which is
a copy of a function depending at the outset on N parameters <HI ,H, ey H> ,
ie, n =n(x;H,H,,.,H) (B sets). Again, the counter-monotonicity
condition is reducible to the statement that for any pair of vectors (ordered sets
of B sets) of the form L =<Ll,...,Ln> and G =<G1,...,Gn> such that

L, =G, (k=12,...,n), the following n inequalities are satisfied:’
T,(x;L,,...,L )2 1,(x;G,,...,G)).

These inequalities associate a partial ordering of sets of B sets with a fam-
ily of vector functions 7 in a rigorously defined way.

In the case of a de-coupled family of counter-monotonic functions, where
the j-th component of a copy of the vector function T does not depend on the
parameter H,, or B set on the j-th axis of definition of the function 7, this

component 7t; of the vector function 7 is written 7, =7 (x;H,,H,,....,H ).

Following again the order of discussion of Sec.2, we now consider the
original problem of analyzing the structure of a multi-modal empirical distribu-
tion in a multidimensional space. We first investigate the case of a one-

dimensional (univariate) distribution.

1 A function 1(x;H) is Borel measurable if for any numerical threshold U° the set
of all x of the real scale for which 1(X;H) >u" is measurable:
{x:m(x;H)>u’} is B set.

2 Here X isa point on the j-th axis. This is tacitly understood everywhere.
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Let p(x) be the density function of points on the x-axis. In the role of the
counter-monotonic family of functions 7, we adopt functions of the form
n(x;H) =p(x)"", where F(H)= Lp(x)dx is the probability of a random
variable occurring in a B set under the probability density function p(x). It is
clear that the counter-monotonicity condition is satisfied.

We consider the following variational problem. Given the externally speci-
fied threshold u® (0 <u’ <1), maximize the functional

TI(H) = [[n(x; H) —u°]dy.

The integral here is understood in the Lebegue sense with respect to meas-
ure W, where [, as mentioned before, is the length of the B set on the x

axis.

Clearly, the quantity [1(H) as a function of the length | (measure of set
H) increases first and then, as pH — oo, reverts to zero by the counter-
monotonicity condition on the family of functions Tt. Therefore, the value of

max, [T(H) will necessary is attained on a certain B set of finite measure [t
(see the analogous assertion in Sec.2).

It is impossible in the same simple way to deduce directly from the form of
the functional TT(H) any maximum condition comparable with the like condi-

tion of the preceding section (Eq.1). To do so would require elaborating the
notation of a “virtual translation” from a B set H to a set H similar to it in
some sense, in such a way as to establish the necessary maximum condition.
These circumstances exclude the case of a univariate distribution from further
consideration. Nonetheless, as will be shown presently, for multivariate distri-
bution there are means for finding a B set that will maximize the function
I1(H) at least in the case of a de-coupled family of counter-monotonic func-

tions.

As in the preceding section, we evaluate the goodness of an identified cen-

tral cluster by the multivariate (vector) performance index

M=(I1,10,,.,11,):  T(H,H,,..H)=[[n(;H,,...H)-uldu,

where u, is the coordinate of the corresponding multidimensional vector of

thresholds U, specified externally: u = <u],u2,...,un> .
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At this point we call attention to the fact that, in contrast with the analogous
multivariate index of Sec.2, the given functional now has significance for an
arbitrary distribution, rather than only for the centered condition of “zero-
valued-ness” of the expectation. We again look for the required cluster in mul-

tidimensional space as an equilibrium situation according to the vector index
I1 =<HI,H2,...,Hn>. We regard a cluster as a set of B sets

H = <H], H,.., H> such that the following inequity holds for every j:

HJ.(HT,...,H;],Hj,H;],...,H:) < HJ.(HT,...,HI,...,H:) (j=1,n).

In a de-coupled family of counter-monotonic functions it is feasible, as in
the multi-parameter case, see Eq. (3), to find an equilibrium situation. Equilib-
rium situations are sought to be a special technique of mappings of B sets onto
real axes.

We define the following type of mappings of B sets onto real axes:
V.H)={x:m(x;H)>u},

where u, is the threshold involved in the expression for the functional IT,

(j=1,n). Thus defined, n such mappings are uniquely expressible in the
vector form
V(H) = {x:n(x;H) >u}.

Here H=H, xH, x...xH_ denotes the direct product of sets H . We de-

fine a fixed point of the mapping V(H) as a set H for which the equality
H =V(H") holds.

Theorem 1. For a de-coupled family of counter-monotonic functions T, a

fixed point of the mapping V(H) generates an equilibrium situation according
to the vector index 11 = <1_[1,1_[2,...,1_[n> .

The proof of the theorem is simple. Thus, because 7, is independent of the

parameter HJ , the form of the function nJ(X;Hj,...,H*. H ,...,H) does not

12 ot

depend on H;. Also, the set H" =H| x H; x...x H, in projection onto the j-

th axis intersects the set HJ consisting exclusively of all points X for which
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m(x;H)>u,: H ={x:m (x;H))>u }. It is immediately apparent that for

any H, distinct from H: the value of the functional

IT(H,,.,H ,H,H ,.,H) for immovable sets H, (k# j) cannot be
HLH . H).

o

*

anything but smaller than the quantity IT, (H,...H

1
It is important, therefore, to find the fixed points of the constructed mapping

of B sets.

4. METHODS OF FINDING EQUILIBRIUM STATE FOR DE-COUPLED FAMILIES
OF COUNTER-MONOTONIC FUNCTIONS

The ensuing discussion rests heavily on the counter-monotonicity property of a
function 7. To facilitate comprehension of the formulations and propositions
we use the language of diagrams reflecting the structure of the relations in-
volved in the constructed mappings of B sets, in particular the symbol —>
denoting the relation “set X, is nested inset X, (X, = X,): X, = X,.

All diagrams of the relations between B sets are based on the following
proposition: the relation X, = X, (as a consequence of the counter-

monotonicity condition on 7 ) implies that V(X,) <~ V(X,).

Now let the mapping V be applied to the original space W of axes on
which the functions 7, (j= L_n) are defined. After the image V(W) has been
obtained, we again apply the mapping V with the B set V(W) as its inverse
image, i.e., we consider the image V*(W), and so on. In this way we construct

a chain of B sets W, V(W), V*(W),..., which we call the central series of
the counter-monotonic system.

The following diagram of nestling of B sets of the central series is inferred

directly from the above stated proposition:

) ™ ™
W« V(W) V (W)« V(W) > VW)« V(W) > ...
0 7 7

It is evident from the diagram that there exist in the central series two mono-
tonic chains of B sets: one shrinking and one growing. The monotonically
shrinking chain of B sets comprises the sequence V?(W) <« V(W) <« ...
with even powers of the mapping V . The monotonically growing chain is the
sequence V(W) — V(W) — V’(W) — ... with odd powers of V .
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It is well known (Shilov and Gurevich, 1967) that monotonically decreasing
(increasing) chains in the class of B sets always converge in the limit of sets of
the same class. For example, the limit of the sets V**(W) with even powers is

the intersection L =17, V**(W), and the limit of sets V*"'(W) with odd
powers is the union G =7, V*'(W).

Theorem 2. For the central series of a counter-monotonic system the nest-
ing Lc G of the limiting B set L of even powers of the mapping V(X) in
the limiting B set G of odd powers of the same mapping is always true.

The theorem follows at once from the diagram of nestlings of the central se-
ries.

We now resume our at the moment interrupted discussion of the problem of
finding a fixed point of a mapping of B sets, such point generating an equilib-
rium situation according to the vector index Il (Theorem 1). In counter-
monotonic systems, as a rule, the strict nesting L = G of limiting B sets
holds in the statement of Theorem 2. The equality L =G would imply conver-
gence of the central series in the limit to a single set, namely a fixed pint. In
view of the exceptional status of the equality L = G, we give a “more refined”
procedure, which automatically in the number of cases of practical importance
yields the desired result, a solution of the equation X = V(X).

Procedure for Solving the Equation X =V(X). A chain of B sets
H,,H,,..., is generated recursively according to the following rule. Let the set
H, (where H, is any B set of finite measure) be already generated in the

chain. We use the mapping V(X) to transform the following B sets:
ViViIH)UVH,)}, VIVH)NH,},

We denote these sets by L ,G,,L ,G; accordingly. By the counter-
monotonicity of the family of functions 7T it turns out that L is a subset of
G, and that L, is a subset of G;. Picking any A, based on the condition
L’ A, cG,, and then B, from the analogous condition L, ¢ B, = G;,
we put the set H,, following H, in the constructed series of B sets equal to
A, UB,: H, =A UB,. The sets A, and B, can be chosen, for example,
according to mapping rules in the class of B sets, namely,

A, ={x:4[n(x; L)+ n(x;G )] >u}, B, = {x: %4[n(x;L,) + n(x;G;)] > u}.

The conditions imposed on A, and B, are satisfied in this case.
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Theorem 3. For the series of sets V(H,) to contain the limiting set
V(H’) as k — o0, which would be a solution of the equation X = V(X), the

following two conditions are sufficient:

a) lim,_, pG,\L, =0,
b) lim,_, pG;\L, =0.

The plan of the proof is quickly grasped in the following nesting diagrams,
which are consequences of the counter-monotonicity property of the functions
T, ie.,

I V!(H,)« L, »> G, < V(H,),
I. VH)<«L -G, «V(H).

Diagrams I and IT imply the validity of the two chains:

1) V:(H)\V(H,)c V’(H)\G, cL\G,,
2)  V(H)\V'(H)cVH)\G; cL\G;.

The first chain implies that for the limiting set H’ of the series H,.H,.,..,
the equality pV*(H,)\V(H ) =0 holds, i.e., V(H") < V*(H"); the second
chain implies the opposite relation: V*(H) = V(H"). Consequently, V(H")
is the solution of the equation X =V(X): V(H)=V(V(H")). Of course,
the conditions of the theorem are sufficient for the existence of a solution of the
equation X = V(X), and their absence does not in any way negate some other
solving technique, provided that solutions exist in general. The possibility that
solution H" of the equation X =V(X) do not exist should certainly not be
dismissed.
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