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ЭКСТРЕМАЛЬНЫЕ ПОДСИСТЕМЫ МОНОТОННЫХ СИСТЕМ. II 
И. Э. МУЛЛАТ 

(Таллин) 

Предлагаетсяконструктивнаяпроцедурапостроения особых определяющих последовательностей эле-
ментов монотонных систем, рассмотренных в [1]. Изучаются взаимные свойства двух определяющих 

последовательностей   и  , и полученный результат форму-лируется в виде теоремы двой-
ственности. На основе теоремы двойственности описан способ сужения области поиска экстремальных 
подсистем — ядер монотонной системы и приведена соответствующая схема поиска. 

1. Введение 

В [1] разработан основной аппарат выделения в монотонных системах 

особых подсистем — ядер, обладающих экстремальными свойствами. 

Основным понятием развитого аппарата является определимое  

множество [2]. В принятой терминологии определимое множество 

оказыва-ется наибольшим ядром монотонной системы взаимосвязанных 

элемен-тов. Понятие определимого множества в [1] вводилось с помощью 

пред-положения существовании особых подпоследовательностей 

элементов изучаемой системы, названных опреде-яющими (   и  ) — 

последовательностями.  

В данной работе вопрос существования определяющих последоатель-

ностей решается конструктивно в виде процедур — алгоритмов. Основ-

ные свойства определяющей последовательности, построенной по прави-

лам процедуры и исчерпывающей все множество элементов системы W, 

гарантируется теоремой. 

Рассматривается также вопрос о том, какая существует связь между 

определяющими последовательностями   и   . Можно предположить, 

что если построена определяющая последовательность  , то стоит взять 

эту последовательность в обратном порядке, как получится   после-

довательность. В общем случае это не так. Тем не менее имеет место 

более слабое утверждение. На основе определенных в [1] понятий  

дискретных действий типа ⊕ и ⊖ и на элементы системы W данное утвер-

ждение формулируется здесь в виде теоремы двойственности. В случае 

выполнения условий теоремы двойственности изложенные алгоритмы  

построения определяющих последовательностей используются для значи-

тельного сужения области поиска ⊕ и ⊖ ядер системы W. Алгоритм  

сужения области поиска изложен также в виде процедуры — конструк-

тивно. 
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Extremal Subsystems of Monotonic Systems, II 

Abstract. A constructive routine is considered for obtaining singular defining sequence 
of elements of monotonic systems studied by Mullat (1976). The relationship between 

two defining sequences   and   is also examined, and the obtained result is for-

mulated as a duality theorem. This theorem is used for describing a routine of restricting 
the domain of search for extremal subsystems (or kernels of a monotonic system); the 
corresponding search scheme is also presented. 
Keywords: monotonic; system; matrix; graph; cluster 

1. INTRODUCTION 

In Mullat (1976) we have developed the basic method of selection (from 
monotonic systems) of singular subsystem, i.e., the kernels possessing extremal 
properties. The main concept of this method is that of a definable set Mullat 
(1971). In the terminology adopted by us, a definable set is the largest kernel of 
a monotonic system of interrelated elements. In 1971 we introduced the con-
cept of a definable set with the aid of the system under consideration called 

defining )(    sequences. 

In this paper the problem of existing of defining sequences is solved con-
structively in the form of routines (algorithms). The principal properties of 
defining sequences sequence constructed according to the rules of a routine and 
that exhausts the entire set of elements of the system W  are specified by a 
theorem. 

We shall also examine the relationship between two defining sequences 

  and  . It can be assumed that after constructing a defining sequence 

 , we could take this sequence in inverse order, thus obtaining an   se-

quence. But in the general case this is not so. Nevertheless we can make a 
weaker assertion. On the basis of the concepts (defined in Mullat (1976) of 

discrete operations of type ⊕ and ⊖ on the elements of a system W , this as-
sertion will be formulated below as a duality theorem. Under the conditions of 
the duality theorem, the algorithms of construction of defining sequences de-
scribed here will be used foe considerably restricting the domain of search for 

⊕ and ⊖ kernels of the system W . The algorithm of restriction of the domain 
of search is presented in the form of a constructive routine. 

2. ROUTINE OF FINDING THE KERNELS 

Below we describe a routine of construction of an ordered sequence   of 

all the elements of W . In abbreviated form, this routine is called KSR (kernel-
searching routine). 
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This routine consists of rules of generation and scanning of an ordered  

series of ordered sets j  (sequences); here j  varies from zero to a value p , 

which is automatically determined by the rules of the routine, whereas the  

elements of each sequence j  are selected from the set W 1. 

This series j  constructed by this rule forms a numerical sequence of 

thresholds ju  and a sequence of sets j . On the other hand the sequence 

of thresholds governs the transactions from 1j  to j  in the chain j , and 

the sequence j  terminates with a set, which is definable. 

In the description of a rule we use the operation of extending a sequence j  

by adjoining to it another sequence  . This operation is symbolically ex-

pressed by  , . This rule of construction of the sequence   of all 

elements of the set W  can be described stages: by step Z and R. 

Z. In the set W  we find an element 0  such that 

)W(F)(Wmin)(W W 



  0  we are constructing a defin-

ing sequence  . The construction of   is entirely similar and therefore 

not presented here. We shall only indicate where it is necessary to invert the 
sign of inequalities, and where the search for an element with the minimal 
credential must be replaced by search for an element with maximal creden-

tial, so as to be able to construct  . Thus the construction here of  , 

the element 0  is obtained from the condition 

)W(F)(Wmax)(W W 



  0 . We shall write 

)(Wu 00  
, 0  and the set W0 . We select a subset 

of elements   from W  such that 0u)(W  \ . The construction 

of   requires the selection of such   that 

0u)(W  \ , )(Wu 00  
. After that we order the elements 

in a certain manner (which can be arbitrary selected). The thus-obtained or-

dered set is denoted by  . Let us write 0 . 

                                                           
1  Let us recall that in a) the brackets ,  denoted an ordered set; in the case under 

consideration they denote an ordered set of ordered sets j . 
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R. We construct a recursive routine for extending the sequences   and 0 . 

Here we denote by )i(0  the i -th element of the sequence 0 . We spec-

ify one after another the elements of the sequence 0 . At each instant of 

specification we extend the sequence   by the elements from 0  of the 

sequence fixed at this instant. In accordance with the symbolic notation of 
the operation of extension of a sequence  , we perform at each instant t  

of specification the operation )t(, 0 . Suppose that all the  

elements of 0  up to )i( 10   inclusive have been fixed. Then the  

sequence   will have the form )1i(),...,2(),1(, 0000  , 

which corresponds to the symbolic notation of the operation of extension of 

the sequences )1i(),...,2(),1(, 000   in the case that   

inside the brackets consists of one element 0 . Let us consider an element 

)1i(0   of the sequence 0 . At the instant of specification of the ele-

ment )1i(0   we decide during the above-mentioned operation of exten-

sion of   also about any further extension or about stopping the extension 

of the sequence 0 . We must check the following two conditions: 

a) In the set \W  there exist elements such that 0u)(W  \  

In constructing  , this condition is replaced by 0u)(W  \ ; 

b) the element )i(0  is defined for the sequence 0 . By assumption an 

element )i(0  to be defined for a sequence 0  if the sequence 0  has 

an element with an ordinal number i . Otherwise the element )i(0  is 

not defined. There can be four cases of fulfillment or no fulfillment of 
these conditions. In two cases, when the first condition is satisfied, irre-

spective of whether or not the second condition holds, the sequence 0  

will be extended. This means that the set of elements   in \W  

specified by the first condition is ordered in the form of sequence  . 

The sequence 0  is extended in accordance with the formula 

 ,00 . In case when the first condition is not satisfied, 

whereas the second condition is satisfied, we shall fix the element 

)i(0  and at the same time extend the sequence  , i.e., 



Monotonic Systems, II 265 

)i(, 0 , and proceed to new recursion stage. In case neither 

the first nor the second condition holds, the sequence 0  will not be ex-

tended nor the last fixed element in the sequence 0  will be the element 

)1i(0  . Suppose that we have fixed all the elements of the sequence 

j . By that time we have constructed a sequence  . Let us consider 

the set \W  and the credential system  \W . We shall find 

an element in  \W  on which the minimum is reached in the cre-

dential system  \W . The obtained element is denoted by 1 j . 

We obtain    the  element  1 j from  the  condition: 

)W(F)(Wmax)(W W1 j  



 \\\ \ . Thus, 

)W(F)(W  j  
 \\ 1 . Let us write 

)(Wu  j j 11 


  \ , and for the set   \W j 1 ; then we 

supplement the sequence   by the element 1 j , i.e., 

1 j,  . In the same way as during the zero step, we select a 

subset of elements   from \W  such that 1  ju)(W 
  \ . 

Here we select for   a set of elements   such that 

1 ju)(W 
  \ . The selected set can be ordered in any manner. 

The ordered set is denoted by  . The set 1 j  is assumed to be equal to 

 . 

c) By analogy with previous b) the recursion step will be described as a re-
cursion routine. At this stage we also use the rule of extension of the se-

quences   and 1 j . Suppose that we have fixed all elements of 1 j  

up to )1i(j   inclusive. Then the sequence   will have the form 

)1i(),...,1(,, jj1 j   , where   denotes the sequence 

  obtained at the instant of fixing all the elements of j , or, to re-

phrase, the sequence   prior to the )1j(  -th step. The last equation 

corresponds to the symbolic operation of extension of the sequence 

)1i(),...,1(,, jj1 j    in the case that   inside the 
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brackets denotes the sequence 1 j,  . Let us consider an element 

)1i(1 j    of the sequence 1 j . At the instant of fixing the element 

)1i(1 j    we decide about a further extension or about stopping the 

extension of the sequence 1 j . For this purpose we consider the cre-

dential system  \W  and we check two conditions: 

1) The set \W  contains elements   such that 

1 ju)(W 
  \  For constructing   we must take 

elements   such that 1 ju)(W 
  \ ; 

2) the element )i( j 1  is defined for the sequence 1j . 

 By analogy with the step Z, we find that the sequence 1j  is extended 

in two cases in which the first condition is satisfied irrespective of 
whether or not the second condition holds. The set of elements   in 

\W  specified by the first condition is ordered in the form of a  

sequence . The sequence 1 j  is extended in accordance with the for-

mula   , j j 11 . In the case that the first condition does not 

hold, whereas the second condition is satisfied, the element )i( j 1  

will be fixed and at the same time we extend the sequence  , i.e., 

)i(,  j 1 , and after that we proceed again in accordance 

with the rules of Stage 2 of the recursion routine of extension of the se-

quence 1 j . In the case that neither the first, nor the second condition 

holds, the sequence 1 j  will not be extended, and the last fixed  

element of the sequence 1 j  will be the element )1i(1 j   . At some 

step p  the sequence   will exhaust the entire set of elements W . 

Theorem 1. A sequence   constructed on the basis of a collection of  

credential system  WH  H 
 is a defining sequence  , whereas a 

sequence   constructed on the basis of  WH  H 
 is a defining 

sequence  . 
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The first part of the theorem (for  ) is proved in Appendix 1. The second 

part (for  ) can be proved in the same way. 

NB1. Let us note that a sequence   constructed by KSR rules has somewhat 
stronger properties than required in obtaining a defining sequence. More  

precisely, there does not exist a proper subset L  for 1p,...,1,0j   such 

that 1 jj L   and )L(F)(F j   . This is not required for obtain-

ing a defining sequence   (  ). The corresponding proof is not given here.  

NB2. Let us note another circumstance. With the aid of the kernel-searching 
routine it is possible to effectively find (without scanning) the largest kernel, 
i.e., a definable set. It is not possible to find an individual kernel strictly in-
cluded in a definable set (if the latter exists) by constructing a defining se-
quence. 

3. DUALITY THEOREM 

Let us establish a relationship between the defining sequences   and   

of a system W . 

Theorem 2. Let   and   be defining sequences of the set W  with  

respect to the collection of credential system  WH  H 
, 

 WH  H 
 respectively. Let 

j  be the subsequence of the  

sequence 


   )p,...,1,0j(   needed in the determination of  , and let 

j  be the corresponding subsequence of the sequence 


   

)q,...,1,0j(  .  

Hence if for an m  and a n  we have 

 )(F)(F mn





  , (1) 

 then 



  1nm W \ , 



  1mn W\ . If 

 )(F)(F mn





  2, (2) 

 then 
  nm W \ , 

  mn W \ . 

                                                           
2  In the following, the  and  sign will not be used twice in notation. This rule 

applies also to Appendices 1 and 2 
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This theorem is important from two points of view. Firstly, under the condi-

tions (1) and (2) there exists a relationship between an   sequence and  . 

This relationship consists in the fact that elements of   which are at the  

“beginning” and form either the set 

 1 nW \  or the set 

nW \  will  

include all the elements of the set 
m  that are at the “end” of  . The same 

applies also to sets 

 1 mW\  or 

mW \  which are at the beginning of  , 

since they include in a similar way the set 
n . In other words, the theorem 

states that the sequence  does not differ “very much” (under certain condi-

tions) from the sequence, which is the inverse to  . 

Let us note that the conditions (1) and (2) are sufficient conditions, and it 
can happen that actual monotonic systems satisfying these conditions do not 
exist. Nevertheless, in the third part of this article, we shall describe actual 
examples of such systems. 

4. KERNEL SEARCH ROUTINE BASED ON DUALITY THEOREM 

We just noted that a defining sequence   differs “slightly” from the  

inverse sequence of  . For elucidating the possibility of a search for kernels 

on the basis of the duality theorem, let us rephrase the latter. This assertion can 

be formulated as follows: at the beginning of the sequence   we often  

encounter elements of the sequence  , which are at the end of the latter. 

Such an interpretation of the duality theorem yields an efficient routine of 

dual search for ⊕ and ⊖ kernels of the system W . This is due to the fact if the 

elements are often encountered, there exists a higher possibility of finding a ⊕ 

kernel at the beginning of the sequence   as compared to finding it at the end 

of  ; the same applies also to a ⊖ kernel in the sequence  . 

The routine under construction is based on Corollaries I-IV of the duality 
theorem presented in Appendix II, where we also prove this theorem. 

The routine of dual search for kernels described below is an application of 

two constructive routines, i.e., a KSR for constructing   and a KSR for  

constructing  . The routine is stepwise, with two constructing stages realized 

at each step, i.e., a stage in which the KSR is used for constructing   with ⊕ 

operations, and a stage in which the same routine is used for constructing   

with the aid of ⊖ operations on the elements of the system. 
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Z. At first we store two numbers: )W(Fu 
 0  and 0u 0 


. After that we 

perform precisely Stage 1 and 2 of the zero step of the KSR used for con-

structing the defining sequence  . This signifies that the set W  contains 

an element 0  such that )W(F)(Wmax)(W W 



  0 . 

The threshold 

0u  is equal to )(W 0

, etc. By using the constructions 

of the zero step of KSR at the previous stage of the dual routine under  

construction, we obtained a set W
1 . Then we examine the set 

1\W  and the credential system 
  1\W . On the set 

1\W  

with the credential system 
  1\W  we perform a complete kernel-

searching routine for the purpose of constructing a defining sequence of ⊕ 

operations only for the set 
1\W . As a result, we obtain in the set 

1\W  a subset 
1K  on which the function F  reaches a global maxi-

mum among all the subsets of the set 
1\W . 

R. By applying the previous )1j(   steps to the j -th step, we obtained a 

sequence of sets 
  j,...,, 10 , and according to the construction of a 

defining sequence we have 
  j...10  and W

0 . At 

first we store two numbers: )(Fu jj



   and )H(Fu j

j 
  . By anal-

ogy, we perform the same construction consisting of two stages of a KSR 

recursion step for constructing   with the aid of ⊕ operations. At a given 

instant of such dual construction we obtained a set 


  j j 1 . Then we 

consider the set 

 1 jW \  and the credential system 




  1 jW \ . In the 

same way as at the zero step, we perform on the set 

 1jW \  a complete 

kernel-searching routine with the purpose of constructing a sequence   

only on the set 

 1 jW \ . As a result we obtain in the set 


 1 jW \  a 

subset 
1 jH 
 on which the function F  reaches a global maximum among 

all subsets of the set 

 1 jW \ . Before starting the construction of the j -th 

step of the routine under construction, we check the condition of a Rule of 
Termination of Construction Routine: 

 
  jj uu . (3) 
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If (3) is satisfied as a strict inequality, the construction will terminate before the 

j -th step. If (3) is an equality, the construction will terminate after the j -th 

step. 

5. DEFINABLE SETS OF DUAL KERNEL-SEARCH ROUTINE 

At the end of the construction process, the above routine yields a set 
jH  or 

a set 
1 jH 
. It can be asserted that one of the sets is definable set or the largest 

kernel of the system W  with respect to a collection of credential system 

 WH  H 
. 

The assertion is based on the following. Firstly, by applying the KSR we 

obtained the second stage of the j -th step of a dual routine the maximal set 
1jH  among all the subsets of the set 


 1 jW \  on which the function F  

reaches a global maximum in the system of sets of all the subsets of the set 

 1 jW \ . Secondly, by virtue of Corollary 1 of the Theorem 2 (the duality 

theorem), it follows that, prior to the j -th step and provided that (3) is a strict 

inequality, the largest kernel (a definable set) will be contained in the set 
jW \ , or it follows from the Corollary 2 of the Theorem 2, if (3) is a equal-

ity, that the largest kernel is included in the set 

 1 jW \ . 

Thus by comparing these two remarks we can see that either 
jH  or 

1 jH 
 

is a definable set. 

By virtue of Corollaries 3 and 4 of the duality theorem, it is possible to find 

by similar dual routine also the largest kernel K ⊕- definable set. This asser-

tion can be proved in the same way as the assertion about 
jH  and 

1 jH 
; there-

fore this proof is not given here. 

APPENDIX 1 

Proof of Theorem 1. We shell prove that a sequence   constructed by the 
KSR rules is a defining sequence for a collection of credential systems  

  WH  H 
. 

First of all let us recall the definition of a defining sequence of elements of 

the system W . We shall use the notation 110   k H,...,H,H , where 

WH 0 , ii i HH  \1  )2k,...,1,0i(  . A sequence of elements 

of a set W  is said to be defining with respect to a coalition of credential sys-
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tem  WH  H 
 if the sequence    has a subsequence of sets 

p,...,,  10 , such that 

a) The credential )(H ii 
 of any element i  of the sequence   

that belongs to the set j , but does not belong to the set 1 j , is 

strictly smaller than the credential of an element with minimal cre-

dential with respect to the set 1 j , i.e., )(F)(H  jii 1
  , 

1p,...,1,0j  3; 

b) the set p  does not have a proper subset L  such that the strict ine-

quality )L(F)(F p    is satisfied (the “” symbol has been 

omitted; see previous footnote). 

We shall consider a sequence of sets    and take the subsequence   in 

the form of the sets j  )p,...,1,0j(   constructed by the KSR rules. We 

have to prove that sets j  have the required properties of a defining sequence. 

Assuming the contrary carries out the proof.  

Let us assume that Mullat property (1971) of a defining sequence is not sat-

isfied. This means that for any set j  there exists in the sequence of elements 

 ),...,2(),1( jjj   

an element )r(j  such that 

 11  j jjrv u)(F))r((H 
   (A.1) 

Here v  is the index number of the element j  selected in Stage 1 of the 

recursion step of the constructive routine of determination of  ; in the vo-

cabulary of notation used in Mullat (1976) we have )(iv j . 

According to the method of construction, the sequence j  consists of se-

quences   formed at the second stage of the j -th step of the constructive rou-

                                                           
3  In the definition of   sequence it is required that the following strict inequality be 

satisfied: )(F)(H  jii 1
  , 1q,...,1,0j   
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tine. Let M  be a set in a sequence of sets    such that the first element 

)M(i  of the set M  in the constructed sequence   is used at the second 

stage of the j -th step for constructing the sequence   to which the element 

)r(j  belongs. This definition of M  shows that MH rv  . 

From the construction of the second stage of the j -th step and the principal 

property of monotonicity of ⊖ operations in the system we obtain the inequali-
ties 

 jjjjjrv u)())r((M))r((H  



 (A.2) 

By virtue of the above method of selection of the set 1 j  from the se-

quence of sets j  and of the properties of a fixed sequence j , we obtain at 

the j -th step  

 1111  j j jjjj u)()(u 



  , (A.3) 

where 1p,...,1,0j  . 

According to the rule of constructing of the sequence  , the function F  

reaches its value on the elements j  and 1 j . The elements j  and 1 j  

belong to the sets j  and 1 j  respectively; therefore the inequalities (A.1) – 

(A.3) are contradictory. 

Thus our assumption is not true and Mullat Property of the defining se-
quence   constructed by KSR rules has been proved. 

Let as assume that Property b) does not hold, i.e., the last p  of the se-

quence j  contains a proper subset L  such that 

 )L(F)(F p   . (A.4) 

Let the element L , and suppose that it is the element with minimal 

ordinal number in   belonging to L ; moreover, let t  denotes this number, 

i.e., )L(it  ,  t . From the definition of t  it follows that tHL  . 

Our analysis carried out above for the set rvH   we repeat below for the set 

tH . By analogy with the definition of the set M  we define a set 'M  with the 

aid of the element   and the sequence  .  
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The set 'M  is equated with the set of the sequence of sets    that begins 

with an element used in the formation of a set   at the p -th step of the con-

structive routine such that  . 

By analogy with derivative of (A.2) we obtain 

 pppt u)()('M)(H  
. (A.5) 

Since )(L)L(F  
 , it follows from (A.4) and (A.5) that 

)(L)(Ht  
. 

We noted above that tHL  , by virtue of the monotonicity of ⊖ opera-

tions, it hence follows that 

 )(H)(L t  
. 

The last two inequalities are contradictory, and hence Property b) of the de-

fining sequence is satisfied. 

Thus we have proved that the sequence   constructed by the KSR rules is 

a defining sequence with respect to a collection of credential systems 

 WH  H 
, and hence it can be denoted by  , whereas the se-

quence j  obtained by a constructive routine can be denoted by 


 . 

APPENDIX 2 

Proof of Duality Theorem. Below we shall show that 



  1nm W \ , if 

)(F)(F mn





   (we omit a twice notation of  and  symbols; a promised 

above the  and  sign will not be used twice  in notation. This rule have been 

applied also to Appendices 1 and 2. 

Let us assume that there exists an element 
 m  and that 


 1m , i.e., 




  1nm W \ . Hence follows that we have defined a credential 

)(n  
1 . According to the definition of the function F  we have the ine-

quality )(F)( nn




  11 . 

For a defining sequence   and for any 1q,...,1,0j   we have ine-

qualities  )(F)(F nn


  1 .
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Let us consider an element 
 ng  with the smallest index number in  . 

It follows from the definition of   that 

 )(F)g( nn



  1 . (A.7) 

The choice of element g  is convenient because it permits the use of Mullat 

Property of a defining sequence (see Appendix 1), i.e., in this case the set 
n  

is in the form of 
 ntH . Since )g()(F nn

  , we have proved (A.6). 

Since 
 m , it follows that we have defined a credential )(m  

. We 

have the following chain of inequalities: 

)()(W)(W)()(F nmm  
. 

Let us recall that for any element   of the system W  under consideration, 

we have in a) the relation )(W)(W  
. The first inequality follows 

from the definition of the function F , and the second inequality from the 

monotonicity of ⊖ operations. The equality follows from the definition of the 

functions 
  and 

 , whereas the last inequality follows from the monotonic-

ity of ⊖ operations. 

By virtue of (A.6) and of the conditions of the theorem, we have also the 

following chain of inequalities: 

 )(F)(F)(F)( mnnn




  11 . 

By supplementing this chain by the previous chain of inequalities, we hence 

obtain )()( nn  
1 . Since 


  nn 1 , it follows from the 

monotonicity of ⊕ operations that )()( nn  



 11 . The logical step 

used for obtaining the last inequality is valid, and therefore the assumption that 



  1nm W \  is untrue. 

In the same way we can prove the inclusion 



  1mn W\ . For this 

purpose it suffices to change the signs of the inequalities and (whenever neces-

sary) to replace the set 

 1n  by 


 1n , and 

m  by 
n . 
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If condition (2) of the theorem holds, it is not necessary to use (A.6). In this 

case the proof will be similar, being based on the following chain of inequali-

ties (The  proof  is  based  on  assuming  the  contrary,  so  that 
  nm W \ ,  i.e.,  there  exists,  as  it were,  an  element 

 m   and 

 n .): 

 
)()(W)(

)(F)(F)(

nm

mnn








. 

The first inequality follows from the definition of )(F n
 , the second fol-

lows from Condition (2) of the theorem, and the third from the definition of 

)(F m
 . The last two relations express the properties of monotonic systems. 

Hence in this case we have under Condition (2) also 

 )()( nn  
. 

This completes the proof of the theorem.  Now follows several corollaries 

of Theorem 2. 

Corollary 1. If for q,0n   the defining sequence is   there exists a 

subset 
 nWH \  such that )(F)H(F n


  . Thus kernel K ⊕ will 

belong to the set 
nW \ . Indeed, since a definable set is also kernel, it fol-

lows that )(F)H(F p


  , p,...,,m 10 , and hence (in any case) if 

pm  , and n  is selected on the basis of the condition of the corollary, then 

)(F)(F pn
  . By virtue of the theorem, we therefore obtain the assertion 

of the corollary. 

Corollary 2. If for 110  q,...,,n  of a defining sequence   there ex-

ists a subset 
 nWH \  such that )(F)H(F n


  , then the kernel K ⊕ 

will belong to the set 

 1nW\ . 

The proof follows directly from Corollary 1, by virtue of (A.6). 
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Corollary 3. If for p,...,1,0m   of a defining sequence   there exists 

a subset 
 mWH \  such that )(F)H(F m


   then the kernel K ⊖ will 

belong to the set 
mW \ . The proof of Corollary 3 is entirely similar to that 

of Corollary 1. It is only necessary to change the signs of the inequalities and 

replace the set 
n  by 

m . 

Corollary 4. If for 1p,...,1,0m   of a defining sequence   there 

exists a subset 
 mWH \  such that )(F)H(F m


  , then the kernel 

K ⊖ will belong to the set 

 1mW\ . 
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