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QKCTPEMAJbHbIE NTOACUCTEMbI MOHOTOHHbIX CUCTEM. Il
W. 3. MYIINAT
(TannuH)

TIpe utaraeTCAKOHCTPYKTHBHASIIPOIIEyPAIOCTPOSHHS OCOOBIX ONPEJIENIONINX MOC/IeN0BaTeIbHOCTEH d1e-
MEHTOB MOHOTOHHBIX CHCTEM, paccMOTpeHHbIX B [1]. V3ydaroTcs B3aMMHBIE CBOMCTBA ABYX ONPEIEISIOLINX

nocaenoBarensHocTer Ol— ¥ Ol4+, M TOIy4eHHbIH pe3ymbraT (GOpMy-JIHpyeTcs B BHIE TEOPEMbI JBOM-

crBeHHOCTH. Ha OCHOBE TeOpeMbl ABOWCTBEHHOCTU OMHUCAH CIOCOO CyKEHHs 00NACTH MOMCKA KCTPEMATbHBIX
TIOACUCTEM — AJEP MOHOTOHHOH CHCTEMBI U TNPpUBEACHA COOTBETCTBYIOIIAsA CXEMa IMOMCKA.

1. BBenenue

B [1] pa3paboTan ocCHOBHOM amnmapat BBIJIEICHUS B MOHOTOHHBIX CHCTEMax
0COOBIX TOJICHCTEM — siAep, OONafalomMX SKCTPEMaJIbHBIMH CBOHCTBaMH.
OCHOBHBIM  TIOHSTHEM PA3BUTOTO  ammapara SBISETCS  ONpPENeNIuMOe
MHOXECTBO [2]. B mnpuHATON TEpMUHONOTMH ONPEAEINMOE MHOXKECTBO
OKa3bIBa-€TCs HaUOOJBIIUM SAPOM MOHOTOHHOM CHCTEMBbI B3aMMOCBSI3aHHBIX
aneMeH-ToB. [IoHsTHE ONpenenrMoro MHOKECTBA B [1] BBOAMIOCH ¢ MOMOILBIO
IPEI-TIOJIOKEHUST  CYIIECTBOBAaHMM  OCOOBIX  IOATOCIEAOBATEIBHOCTEH
SIIEMEHTOB H3yd4aeMOil CHCTEMbI, HA3BAHHBIX ONPE/Ie-SIOMIMHE (OL_ n o) —

MOCJICA0BATCIIBHOCTAMM.

B nanHO# paboTe BOIpOC CyIIECTBOBAHHS ONPECISIFONINX MTOCIE0aTeb-
HOCTEH pelraercss KOHCTPYKTUBHO B BUZE Mpoueayp — anroputmoB. OcHOB-
HBIE CBOWCTBA ONpEACIAIONICH M0CIEN0BATEIbHOCTH, IOCTPOCHHOM 10 IpaBH-
JIaM TIpOLEAYpbl U UCUEPIIBIBAIOLIEH BCE MHOXKECTBO JJIEMEHTOB CUCTEMEI W,

rapaHTUPYETCsl TEOPEMOM.

PaccmaTpuBaeTcst Takoke BONPOC O TOM, Kakasi CyIIECTBYET CBSI3b MEXKIY
ONIPEIEIISIOMIIMH TI0CIICA0BATEIHOCTAME 0L U . . MoxHo TIPEATIONOKHUTH,
9TO €CIH MOCTPOEHA OMpPEIEAIONAs 0CIeI0BATENHOCT (L, TO CTOUT B3STh
5Ty NOC/EIOBATENBHOCTh B OOPATHOM IMOPSIKE, KaK MONYYMTCS (L, MOCIe-
JoBaTelbHOCTh. B 0o0mem ciydae 3T0 He Tak. TeM He MeHee MMEET MECTO
bonee crnaboe yTtBepxkiaeHue. Ha ocHoBe ompexeneHHbIX B [1] mOHATHIMA
JMCKPETHBIX JAeHCTBUI THIa @ U © U Ha AIEMEHTHI cucTeMbl W naHHOe yTBep-
xneHne Gopmynmpyercs 3/ech B BHAE TEOPEMBI JBOMCTBEHHOCTH. B ciydae
BBITNTIOJIHCHU S yCJ'IOBI/Iﬁ TCOPEMBI ﬂBOﬁCTBeHHOCTH H3JIOKCHHBIC aJIr'OPUTMbI
HOCTPOEHUS ONPEASIIAIONINX [I0C/IEI0BATEIbHOCTEH UCIIONB3YIOTCA AJIsl 3HAUH-
TENIBHOTO CYXEHHUsl obyacTu moucka © W © sgep cucrembl W. Anroputm
CyXKEHHsI 00JIaCTH TOMCKa HM3JIOKEH TaKKe B BHJE MPOLENYPHl — KOHCTPYK-

THBHO.
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Extremal Subsystems of Monotonic Systems, II

Abstract. A constructive routine is considered for obtaining singular defining sequence
of elements of monotonic systems studied by Mullat (1976). The relationship between

two defining sequences O_ and O . 1s also examined, and the obtained result is for-

mulated as a duality theorem. This theorem is used for describing a routine of restricting
the domain of search for extremal subsystems (or kernels of a monotonic system); the
corresponding search scheme is also presented.

Keywords: monotonic; system; matrix; graph; cluster

1. INTRODUCTION

In Mullat (1976) we have developed the basic method of selection (from
monotonic systems) of singular subsystem, i.e., the kernels possessing extremal
properties. The main concept of this method is that of a definable set Mullat
(1971). In the terminology adopted by us, a definable set is the largest kernel of
a monotonic system of interrelated elements. In 1971 we introduced the con-
cept of a definable set with the aid of the system under consideration called

defining t_(OL, ) sequences.

In this paper the problem of existing of defining sequences is solved con-
structively in the form of routines (algorithms). The principal properties of
defining sequences sequence constructed according to the rules of a routine and
that exhausts the entire set of elements of the system W are specified by a
theorem.

We shall also examine the relationship between two defining sequences

o_ and O , - It can be assumed that after constructing a defining sequence
oL, we could take this sequence in inverse order, thus obtaining an Ol , se-
quence. But in the general case this is not so. Nevertheless we can make a
weaker assertion. On the basis of the concepts (defined in Mullat (1976) of
discrete operations of type @ and © on the elements of a system W | this as-
sertion will be formulated below as a duality theorem. Under the conditions of

the duality theorem, the algorithms of construction of defining sequences de-
scribed here will be used foe considerably restricting the domain of search for

® and © kernels of the system W . The algorithm of restriction of the domain
of search is presented in the form of a constructive routine.

2. ROUTINE OF FINDING THE KERNELS

Below we describe a routine of construction of an ordered sequence O of
all the elements of W . In abbreviated form, this routine is called KSR (kernel-
searching routine).
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This routine consists of rules of generation and scanning of an ordered
series of ordered sets <B j> (sequences); here ] varies from zero to a value p,

which is automatically determined by the rules of the routine, whereas the

elements of each sequence [3 ; are selected from the set W'

This series <BJ> constructed by this rule forms a numerical sequence of
thresholds <uj> and a sequence of sets <Fj> . On the other hand the sequence
of thresholds governs the transactions from EH to EJ in the chain <Ej> , and
the sequence <Fj> terminates with a set, which is definable.

In the description of a rule we use the operation of extending a sequence B i

by adjoining to it another sequence Y. This operation is symbolically ex-
pressed by B <~ <E,7> This rule of construction of the sequence O of all

elements of the set W can be described stages: by step Z and R.

Z In the set W we find an element |, such that
n W(y,) =min,_,© W(3) =F (W) we are constructing a defin-

ing sequence OL_. The construction of O . is entirely similar and therefore

not presented here. We shall only indicate where it is necessary to invert the
sign of inequalities, and where the search for an element with the minimal
credential must be replaced by search for an element with maximal creden-

tial, so as to be able to construct Ol .- Thus the construction here of o s

the element W, is obtained from the condition
T"W(y,) =max,_,n W) =F (W). We shall write
u, =1 W(y,), a= <“0> and the set I'j) = W . We select a subset

of elements Y from W such that T W \ a(y) < U, . The construction

of O, requires  the  selection  of  such Y that
T"W\a(y)>u,,u, =" W(L,). After that we order the elements
in a certain manner (which can be arbitrary selected). The thus-obtained or-

dered set is denoted by 7Y . Let us write Eo =Y.

' Let us recall that in a) the brackets <,> denoted an ordered set; in the case under

consideration they denote an ordered set of ordered sets B i
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We construct a recursive routine for extending the sequences Ol and BO.
Here we denote by [3,(1) the 1-th element of the sequence [3,. We spec-
ify one after another the elements of the sequence Bo- At each instant of

specification we extend the sequence O by the elements from Bo of the

sequence fixed at this instant. In accordance with the symbolic notation of
the operation of extension of a sequence Ol , we perform at each instant t

of specification the operation Ol (—<6,B0(t)>. Suppose that all the

elements of Eo up to Bo (1—1) inclusive have been fixed. Then the
sequence O will have the form <H0,B0(1),B0(2),...,B0(i—1)>,

which corresponds to the symbolic notation of the operation of extension of
the sequences QL ¢— <a, B,(D),B,(2),....0,0 - 1)> in the case that 0L

inside the brackets consists of one element L, . Let us consider an element
Bo (1—1) of the sequence Bo- At the instant of specification of the ele-
ment Bo (1—1) we decide during the above-mentioned operation of exten-

sion of OU also about any further extension or about stopping the extension

of the sequence Eo . We must check the following two conditions:

a) Inthe set W \ 0L there exist elements such that T W \ at(y) < u,

In constructing O . » this condition is replaced by T W\ E(y) 2U;

b) the element Bo (1) is defined for the sequence Eo' By assumption an

element [3,(1) to be defined for a sequence Bo if the sequence Bo has

an element with an ordinal number 7. Otherwise the element Bo (1) is

not defined. There can be four cases of fulfillment or no fulfillment of
these conditions. In two cases, when the first condition is satisfied, irre-

spective of whether or not the second condition holds, the sequence Bo
will be extended. This means that the set of elements Y in W \ O

specified by the first condition is ordered in the form of sequence 7Y .

The sequence [}, is extended in accordance with the formula

Eo <« <§O,?> In case when the first condition is not satisfied,

whereas the second condition is satisfied, we shall fix the element
B,(1) and at the same time extend the sequence O, i.e.,
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o <« <E, Bo (1)> , and proceed to new recursion stage. In case neither
the first nor the second condition holds, the sequence [3, will not be ex-

tended nor the last fixed element in the sequence Eo will be the element

Bo (1 - 1) . Suppose that we have fixed all the elements of the sequence
Ej. By that time we have constructed a sequence Ol . Let us consider

the set W \ O and the credential system IT"W \ O . We shall find
an element in [1"W \ 0L on which the minimum is reached in the cre-

dential system I1~W \ O . The obtained element is denoted by L i1

We obtain O, the element [ jr1from  the condition:
TWA\a(n,,)=maxy, ;T W\a@d)=F (W\a). Thus,
T W\ a(p,j”) =F (W\a). Let us write
u,, =1 W\a(u,,), and for the set I';,; =W \Q; then we

supplement the sequence O by the element L 1o ie.,
o« <a, S > In the same way as during the zero step, we select a

subset of elements Y from W \ @ such that T~ W \ at(y) < u;, .

Here we select for O, a set of elements 7Y such that

TW\a(y)>u

i1 The selected set can be ordered in any manner.

The ordered set is denoted by 7Y . The set Ej+1 is assumed to be equal to

Y.

By analogy with previous b) the recursion step will be described as a re-
cursion routine. At this stage we also use the rule of extension of the se-

quences O and Ej+1 . Suppose that we have fixed all elements of i1

up to [3 j(i —1) inclusive. Then the sequence O will have the form
o= <a, i Bj m,..., Bj (1i- l)> , where OU denotes the sequence
OU obtained at the instant of fixing all the elements of Bj , or, to re-

phrase, the sequence Ol prior to the (j+ 1) -th step. The last equation
corresponds to the symbolic operation of extension of the sequence

a=<a,pj+l,ﬁj(l),...,ﬁj(i—1)> in the case that Ol inside the
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brackets denotes the sequence <a,u i +1>. Let us consider an element

B i1 (1—1) of the sequence At the instant of fixing the element

1
B i+ (i - 1) we decide about a further extension or about stopping the
extension of the sequence ﬁj .4 - For this purpose we consider the cre-

dential system IT"W \ O and we check two conditions:

1) The set W\a contains elements Y such that

T W\a(y)<u jo1 For constructing O, we must take

+

elements Y such that T°W \ at(y) > u

j+1;

2) the element B i1 (1) is defined for the sequence Ej -

By analogy with the step Z, we find that the sequence Bj .1 1s extended

in two cases in which the first condition is satisfied irrespective of
whether or not the second condition holds. The set of elements Yy in

W\a specified by the first condition is ordered in the form of a
sequence Y The sequence Ej .1 is extended in accordance with the for-

mula i1

<Ej 1 ,7> In the case that the first condition does not
hold, whereas the second condition is satisfied, the element [3 j+1(i)
will be fixed and at the same time we extend the sequence L, i.e.,
o <G,B i +1(i)>, and after that we proceed again in accordance
with the rules of Stage 2 of the recursion routine of extension of the se-

quence Bj . 1. In the case that neither the first, nor the second condition

holds, the sequence will not be extended, and the last fixed

j+1
element of the sequence EJ .4 will be the element [3 i+ (1—1). At some

step P the sequence O will exhaust the entire set of elements W .

Theorem 1. A sequence Ol constructed on the basis of a collection of

credential system {H_H| Hc W} is a defining sequence OL_, whereas a

sequence O constructed on the basis of {H+H| Hc W} is a defining

sequence O, .



Monotonic Systems, 11 267

The first part of the theorem (for O._) is proved in Appendix 1. The second

part (for QU . ) can be proved in the same way.

NBI. Let us note that a sequence O constructed by KSR rules has somewhat
stronger properties than required in obtaining a defining sequence. More

precisely, there does not exist a proper subset L for _] = 0,1,...,p —1 such
that I; D LT, and F (I';) <F (L). This is not required for obtain-

ing a defining sequence OL_ (O . )- The corresponding proof is not given here.

NB2. Let us note another circumstance. With the aid of the kernel-searching
routine it is possible to effectively find (without scanning) the largest kernel,
i.e., a definable set. It is not possible to find an individual kernel strictly in-
cluded in a definable set (if the latter exists) by constructing a defining se-
quence.

3. DuALITY THEOREM

Let us establish a relationship between the defining sequences O and O N

of a system W .

Theorem 2. Let 0. and O, be defining sequences of the set W with
respect to the collection of credential system {H_H| Hc W},
{H+H| Hc W} respectively. Let <1—‘j7> be the subsequence of the
sequence A 5 (_] = 0,1,...,p) needed in the determination of O._, and let

+ .
<Fj> be the corresponding subsequence of the sequence A&

(j=0,,..,9).

Hence if foran M and a N we have
FE@)=E(T,), (1)
then [ c W\I, T W\l .If
F.(I) <F.(T;)? @

then I- < W\, T" c W\T..

n

? Inthe following, the + and — sign will not be used twice in notation. This rule

applies also to Appendices 1 and 2
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This theorem is important from two points of view. Firstly, under the condi-
tions (1) and (2) there exists a relationship between an O_ sequence and O e

This relationship consists in the fact that elements of O , Which are at the
“beginning” and form either the set W \ 1“;1 or the set W \ F: will
include all the elements of the set 1—; that are at the “end” of O . The same
applies also to sets W \ " . or W \ I"_ which are at the beginning of O_,

since they include in a similar way the set F:. In other words, the theorem
states that the sequence OL , does not differ “very much” (under certain condi-

tions) from the sequence, which is the inverse to OL_ .

Let us note that the conditions (1) and (2) are sufficient conditions, and it
can happen that actual monotonic systems satisfying these conditions do not
exist. Nevertheless, in the third part of this article, we shall describe actual
examples of such systems.

4. KERNEL SEARCH ROUTINE BASED ON DUALITY THEOREM

We just noted that a defining sequence O . differs “slightly” from the

inverse sequence of Ol_. For elucidating the possibility of a search for kernels
on the basis of the duality theorem, let us rephrase the latter. This assertion can
be formulated as follows: at the beginning of the sequence O . we often

encounter elements of the sequence O, which are at the end of the latter.

Such an interpretation of the duality theorem yields an efficient routine of
dual search for ® and © kernels of the system W . This is due to the fact if the

elements are often encountered, there exists a higher possibility of finding a ©
kernel at the beginning of the sequence Ol . as compared to finding it at the end

of OL_; the same applies also to a © kernel in the sequence OL_.

The routine under construction is based on Corollaries I-IV of the duality
theorem presented in Appendix II, where we also prove this theorem.

The routine of dual search for kernels described below is an application of
two constructive routines, i.e., a KSR for constructing O . and a KSR for

constructing OL_. The routine is stepwise, with two constructing stages realized
at each step, i.c., a stage in which the KSR is used for constructing a+ with @
operations, and a stage in which the same routine is used for constructing O _

with the aid of © operations on the elements of the system.
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Z. At first we store two numbers: ug =F, (W) and u, =0. After that we
perform precisely Stage 1 and 2 of the zero step of the KSR used for con-
structing the defining sequence O . - This signifies that the set W  contains

an element [, such that ©° W(,) = max,_, ' W(d) = F_(W).

The threshold ug is equal to 7‘E+W(u0) , etc. By using the constructions
of the zero step of KSR at the previous stage of the dual routine under

construction, we obtained a set F1+ c W . Then we examine the set
WA\T 1+ and the credential system IMw\T 1+. On the set W\ IT

with the credential system [1"W \ T we perform a complete kernel-

searching routine for the purpose of constructing a defining sequence of ®

operations only for the set W \ F1+- As a result, we obtain in the set
\\% \ I 1+ a subset K' on which the function F  reaches a global maxi-
mum among all the subsets of the set W \ I'}" .

R. By applying the previous (] - 1) steps to the j-th step, we obtained a

sequence of sets 1 ,IT,...,F; , and according to the construction of a
defining sequence we have FJ D Fr D...D F; and T 0+ =W. At

first we store two numbers: u; =F, (IT) and u; = F_(H'). By anal-
ogy, we perform the same construction consisting of two stages of a KSR
recursion step for constructing a+ with the aid of @ operations. At a given

instant of such dual construction we obtained a set I .-

.
i1 C Fj . Then we

consider the set W'\ Fj:1 and the credential system IT" W \ FjL . In the

same way as at the zero step, we perform on the set W \ FJ.L a complete

kernel-searching routine with the purpose of constructing a sequence O._

+

only on the set W\ Fji1. As a result we obtain in the set W\ Fj L, a
subset H™"" on which the function F  reaches a global maximum among

all subsets of the set W'\ 1—‘;1 . Before starting the construction of the j-th

step of the routine under construction, we check the condition of a Rule of
Termination of Construction Routine:

uj+ <u;. 3)
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If (3) is satisfied as a strict inequality, the construction will terminate before the
j—th step. If (3) is an equality, the construction will terminate after the j—th
step.

5. DEFINABLE SETS OF DUAL KERNEL-SEARCH ROUTINE

At the end of the construction process, the above routine yields a set H' or

+1 .
aset H'"'. It can be asserted that one of the sets is definable set or the largest
kernel of the system W with respect to a collection of credential system

{(MH|Hc W},

The assertion is based on the following. Firstly, by applying the KSR we
obtained the second stage of the j-th step of a dual routine the maximal set
H'™' among all the subsets of the set W\ FjL on which the function F_
reaches a global maximum in the system of sets of all the subsets of the set
W\ F;H . Secondly, by virtue of Corollary 1 of the Theorem 2 (the duality
theorem), it follows that, prior to the j-th step and provided that (3) is a strict
inequality, the largest kernel (a definable set) will be contained in the set

W\ F;r , or it follows from the Corollary 2 of the Theorem 2, if (3) is a equal-

. P . +
ity, that the largest kernel is included in the set W \ Fj 1

Thus by comparing these two remarks we can see that either H' or H*!
is a definable set.

By virtue of Corollaries 3 and 4 of the duality theorem, it is possible to find
by similar dual routine also the largest kernel K ©- definable set. This asser-

. . . ' 1
tion can be proved in the same way as the assertion about H' and H’ ', there-
fore this proof is not given here.

APPENDIX 1

Proof of Theorem 1. We shell prove that a sequence & constructed by the
KSR rules is a defining sequence for a collection of credential systems

{MH|Hc W},
First of all let us recall the definition of a defining sequence of elements of
the system W . We shall use the notation A _ = <Ho JH,..,H, >, where
H,=W, H,=H \a, (i=0,,...,k—2). A sequence of elements

of aset W is said to be defining with respect to a coalition of credential sys-
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tem {H7H| Hc W} if the sequence A _ has a subsequence of sets
Fa = <FO’F1""’Fp>’ such that

a) The credential T H,(0l,) of any element O, of the sequence O

that belongs to the set I';, but does not belong to the set I, is
strictly smaller than the credential of an element with minimal cre-

dential with respect to the set Fj+1, ie., TC_Hi(OLi) <F (Fj+1) ,
1=0,L...,p—-1%

b) the set Fp does not have a proper subset L such that the strict ine-
quality F_(I')) <F_(L) is satisfied (the “~” symbol has been

omitted; see previous footnote).

We shall consider a sequence of sets A 5 and take the subsequence Fa in
the form of the sets Fj (j=0,L,...,p) constructed by the KSR rules. We
have to prove that sets Fj have the required properties of a defining sequence.
Assuming the contrary carries out the proof.

Let us assume that Mullat property (1971) of a defining sequence is not sat-
isfied. This means that for any set Fj there exists in the sequence of elements

B, =(B;(1),B;(2),-.,)

an element [3 j (1) such that

TC_HV-H (BJ (r)) 2 F—(Fj+1) = uj+1 (Al)

Here V is the index number of the element |, selected in Stage 1 of the

recursion step of the constructive routine of determination of O ; in the vo-
cabulary of notation used in Mullat (1976) we have V = i(l“j) .

According to the method of construction, the sequence Bj consists of se-

quences Y formed at the second stage of the _] -th step of the constructive rou-

? In the definition of O . sequence it is required that the following strict inequality be

satisfied: TE+Hi(OLi) > F+(Fj+1), _] = 0,1,...,q -1
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tine. Let M be a set in a sequence of sets A 5 such that the first element

a of the set M in the constructed sequence O is used at the second

i(M)
stage of the j-th step for constructing the sequence Yy to which the element
B;(r) belongs. This definition of M shows that H,,, < M.

From the construction of the second stage of the _] -th step and the principal

property of monotonicity of © operations in the system we obtain the inequali-
ties

mH, B;r) <t MP;@)<nTi(u)=u A2

By virtue of the above method of selection of the set Fj .1 from the se-

quence of sets <Fj> and of the properties of a fixed sequence Ej , we obtain at

the j-th step
uj = Tcil—‘j(l’ljﬂ) < 7.[:71—‘j+1(l’lj+1) = uj+1’ (A'3)
where j=0,l,...,p—1.

According to the rule of constructing of the sequence O, the function F

reaches its value on the elements [1; and W, ;. The elements Ll; and W,

1
belong to the sets Fj and Fj .1 respectively; therefore the inequalities (A.1) —
(A.3) are contradictory.

Thus our assumption is not true and Mullat Property of the defining se-
quence O constructed by KSR rules has been proved.

Let as assume that Property b) does not hold, i.e., the last Fp of the se-

quence <Fj> contains a proper subset L such that
F (') <E(L). (A4)

Let the element A € L, and suppose that it is the element with minimal
ordinal number in O belonging to L ; moreover, let t denotes this number,
ie, t=1(L), o, = A. From the definition of # it follows that L < H .

Our analysis carried out above for the set Hv . We repeat below for the set
Ht . By analogy with the definition of the set M we define a set M' with the

aid of the element A and the sequence Ol .
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The set M" is equated with the set of the sequence of sets A 5 that begins
with an element used in the formation of a set ¥ at the P -th step of the con-
structive routine such that A € .

By analogy with derivative of (A.2) we obtain

THM) <t M@AQ)2nT (n,)=u,. (A.5)

Since F (L)<m L(A), it follows from (A.4) and (A.5) that
n H,(A) <m L(A).
We noted above that L. Ht , by virtue of the monotonicity of © opera-

tions, it hence follows that
n L(A)<n H,(A).
The last two inequalities are contradictory, and hence Property b) of the de-
fining sequence is satisfied.

Thus we have proved that the sequence Ol constructed by the KSR rules is
a defining sequence with respect to a collection of credential systems
{H_H| Hc W}, and hence it can be denoted by OL_, whereas the se-

quence <Fj> obtained by a constructive routine can be denoted by Fa_,

APPENDIX 2

Proof of Duality Theorem. Below we shall show that I < W\ T i
F (') =F (I,) (we omit a twice notation of + and — symbols; a promised

above the + and — sign will not be used twice in notation. This rule have been

applied also to Appendices 1 and 2.

Let us assume that there exists an element § € I’ andthat E e I,

I < W\T,. Hence follows that we have defined a credential

I ++1 (&) According to the definition of the function F . we have the ine-
quality ", (&) < F(T,).

For a defining sequence a and for any J = O,l,...,q —1 we have ine-

qualities F(T ) <FT)).
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Let us consider an element g € F; with the smallest index number in O .-

It follows from the definition of O N that

nl (g) > F(I,

n+1/ *

(A7)
The choice of element g is convenient because it permits the use of Mullat

Property of a defining sequence (see Appendix 1), i.e., in this case the set F:

is in the form of H, = F: . Since F(F}:) > Ttl—‘r:r (), we have proved (A.6).

Since § € I, it follows that we have defined a credential 7l (€). e

have the following chain of inequalities:
FI,)<al (8) STt W(E) =n"W(E) <l (§).

Let us recall that for any element O of the system W under consideration,
we have in a) the relation T~ W(J) = TC+W(5) . The first inequality follows

from the definition of the function F , and the second inequality from the

monotonicity of © operations. The equality follows from the definition of the
functions 7T and 70", whereas the last inequality follows from the monotonic-

ity of © operations.

By virtue of (A.6) and of the conditions of the theorem, we have also the

following chain of inequalities:

il (&) < F(I,

+1

) <F(I7)=F(I).

By supplementing this chain by the previous chain of inequalities, we hence

obtain ml(E) <ml (E). Since I

n+1

cr r:r , it follows from the
monotonicity of & operations that 7L ,(§) < [\ ,(&) . The logical step
used for obtaining the last inequality is valid, and therefore the assumption that
I < W\T, isuntrue.

In the same way we can prove the inclusion F: c W\l—; .- For this
purpose it suffices to change the signs of the inequalities and (whenever neces-
sary) to replace the set 1_: 4 by and I by I’ n+ .

n+12
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If condition (2) of the theorem holds, it is not necessary to use (A.6). In this
case the proof will be similar, being based on the following chain of inequali-
ties (The proof is based on assuming the contrary, so that

I W \ F: , i.e., there exists, as it were, an element & €1 and
ci € F: s

AT (8) < (T < F(T;) <

<l (&) <m W(E) <l (&)

The first inequality follows from the definition of F(F}: ) , the second fol-

lows from Condition (2) of the theorem, and the third from the definition of

F(Fr;) The last two relations express the properties of monotonic systems.

Hence in this case we have under Condition (2) also
"L (&) < 7 (8).

This completes the proof of the theorem. ® Now follows several corollaries

of Theorem 2.

Corollary 1. If for n = @ the defining sequence is Ol . there exists a
subset HC W\ such that F (H)>F(I")). Thus kernel K ® will
belong to the set W \ Fn+ . Indeed, since a definable set is also kernel, it fol-
lows that F (H) < F(F};), m= 0,1,...,p , and hence (in any case) if
m =D, and N is selected on the basis of the condition of the corollary, then
FI7)< F(I')) . By virtue of the theorem, we therefore obtain the assertion
of the corollary.

Corollary 2. If for n = 0,1,..., q —1ofa defining sequence a+ there ex-
ists a subset H © W\ T such that F (H) = F(I""), then the kernel K @
will belong to the set W \ F;H .

The proof follows directly from Corollary 1, by virtue of (A.6).
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Corollary 3. If for m = 0,1,...,p of a defining sequence O, there exists
asubset H & W \ T such that F_ (H) < F(I",) then the kernel K © will
belong to the set W\ 1_; . The proof of Corollary 3 is entirely similar to that

of Corollary 1. It is only necessary to change the signs of the inequalities and

replace the set [ by I'_.

Corollary 4. If for m = 0,1,...,p —1 of a defining sequence O_ there
exists a subset H < W \ T such that F_ (H)=F(I[_), then the kernel
K © will belong to the set W \ I"

m+1°
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