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ЭКСТРЕМАЛЬНЫЕ ПОДСИСТЕМЫ МОНОТОННЫХ СИСТЕМ. II 
И. Э. МУЛЛАТ 

(Таллин) 

Предлагается конструктивная процедура построения особых определяющих последовательностей эле-
ментов монотонных систем, рассмотренных в [1]. Изучаются взаимные свойства двух определяющих 

последовательностей   и  , и полученный результат формулируется в виде теоремы двой-
ственности. На основе теоремы двойственности описан способ сужения области поиска экстремальных 
подсистем — ядер монотонной системы и приведена соответствующая схема поиска. 

1. Введение 

В [1] разработан основной аппарат выделения в монотонных системах 
особых подсистем — ядер, обладающих экстремальными свойствами. 
Основным понятием развитого аппарата является определимое  
множество [2]. В принятой терминологии определимое множество 
оказыва-ется наибольшим ядром монотонной системы взаимосвязанных 
элемен-тов. Понятие определимого множества в [1] вводилось с помощью 
пред-положения существовании особых подпоследовательностей 
элементов изучаемой системы, названных опреде-яющими (   и  ) — 
последовательностями.  

В данной работе вопрос существования определяющих последоатель-
ностей решается конструктивно в виде процедур — алгоритмов. Основ-
ные свойства определяющей последовательности, построенной по прави-
лам процедуры и исчерпывающей все множество элементов системы W, 
гарантируется теоремой. 

Рассматривается также вопрос о том, какая существует связь между 
определяющими последовательностями   и   . Можно предположить, 
что если построена определяющая последовательность  , то стоит взять 
эту последовательность в обратном порядке, как получится   после-
довательность. В общем случае это не так. Тем не менее имеет место 
более слабое утверждение. На основе определенных в [1] понятий  
дискретных действий типа ⊕ и ⊖ и на элементы системы W данное утвер-
ждение формулируется здесь в виде теоремы двойственности. В случае 
выполнения условий теоремы двойственности изложенные алгоритмы  
построения определяющих последовательностей используются для значи-
тельного сужения области поиска ⊕ и ⊖ ядер системы W. Алгоритм  
сужения области поиска изложен также в виде процедуры — конструк-
тивно. 
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Extremal Subsystems of Monotonic Systems, II 

Abstract. A constructive routine is considered for obtaining singular defining sequence 
of elements of monotonic systems studied by Mullat (1976). The relationship between 

two defining sequences   and   is also examined, and the obtained result is formu-

lated as a duality theorem. This theorem is used for describing a routine of restricting the 
domain of search for extremal subsystems (or kernels of a monotonic system); the corre-
sponding search scheme is also presented. 
Keywords: monotonic; system; matrix; graph; cluster 

1. INTRODUCTION 

In Mullat (1976) we have developed the basic method of selection (from mono-

tonic systems) of singular subsystem, i.e., the kernels possessing extremal 

properties. The main concept of this method is that of a definable set Mullat 

(1971). In the terminology adopted by us, a definable set is the largest kernel of 

a monotonic system of interrelated elements. In 1971 we introduced the con-

cept of a definable set with the aid of the system under consideration called 

defining )(    sequences. 

In this paper the problem of existing of defining sequences is solved con-

structively in the form of routines (algorithms). The principal properties of 

defining sequences sequence constructed according to the rules of a routine and 

that exhausts the entire set of elements of the system W  are specified by a 

theorem. 

We shall also examine the relationship between two defining sequences   

and  . It can be assumed that after constructing a defining sequence  , we 

could take this sequence in inverse order, thus obtaining an   sequence. But 

in the general case this is not so. Nevertheless we can make a weaker assertion. 

On the basis of the concepts (defined in Mullat (1976) of discrete operations of 

type ⊕ and ⊖ on the elements of a system W , this assertion will be formulated 

below as a duality theorem. Under the conditions of the duality theorem, the 

algorithms of construction of defining sequences described here will be used 

foe considerably restricting the domain of search for ⊕ and ⊖ kernels of the 

system W . The algorithm of restriction of the domain of search is presented in 

the form of a constructive routine. 



Monotonic Systems, II 269 

2. ROUTINE OF FINDING THE KERNELS 

Below we describe a routine of construction of an ordered sequence   of all 
the elements of W . In abbreviated form, this routine is called KSR (kernel-
searching routine). 

This routine consists of rules of generation and scanning of an ordered  

series of ordered sets j  (sequences); here j  varies from zero to a value p , 

which is automatically determined by the rules of the routine, whereas the  

elements of each sequence j  are selected from the set W 1. 

This series j  constructed by this rule forms a numerical sequence of 

thresholds ju  and a sequence of sets j . On the other hand the sequence of 

thresholds governs the transactions from 1j  to j  in the chain j , and the 

sequence j  terminates with a set, which is definable. 

In the description of a rule we use the operation of extending a sequence j  

by adjoining to it another sequence  . This operation is symbolically ex-

pressed by  , . This rule of construction of the sequence   of all 

elements of the set W  can be described stages: by step Z and R. 

Z. In the set W  we have found an element 0  for which 

)W(F)(Wmin)(W W0 





  ; we are constructing a defining se-

quence  . The construction of   is entirely similar and therefore not 

presented here. We shall only indicate where it is necessary to invert the 
sign of inequalities, and where the search for an element with the minimal 
credential must be replaced by search for an element with maximal creden-

tial, so as to be able to construct  . Thus the construction of  , the 

element 0  is obtained from )W(F)(Wmax)(W W0 





   condi-

tion. We shall write )(Wu 00   , 0  and the set W0 . We 

select a subset of elements   from W  such that 0u)(W  \ . The 

construction of   requires the selection of such   that 

0u)(W  \ , )(Wu 00   . After that we order the elements in a 

certain manner (which can be arbitrary selected). The thus-obtained ordered 

set is denoted by  . Let us write 0 . 

                                                           
1  Let us recall that in a) the brackets ,  denoted an ordered set; in the case under 

consideration they denote an ordered set of ordered sets j . 
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R. We construct a recursive routine for extending the sequences   and 0 . 

Here we denote by )i(0  the i -th element of the sequence 0 . We specify 

one after another the elements of the sequence 0 . At each instant of speci-

fication we extend the sequence   by the elements from 0  of the se-

quence fixed at this instant. In accordance with the symbolic notation of the 

operation of extension of a sequence  , we perform at each instant t  of 

specification the operation )t(, 0 . Suppose that all the  

elements of 0  up to )1i(0   inclusive have been fixed. Then the  

sequence   will have the form )1i(),...,2(),1(, 0000  , which corre-

sponds to the symbolic notation of the operation of extension of the se-

quences )1i(),...,2(),1(, 000   in the case that   inside the 

brackets consists of one element 0 . Let us consider an element )1i(0   

of the sequence 0 . At the instant of specification of the element )1i(0   

we decide during the above-mentioned operation of extension of   also 

about any further extension or about stopping the extension of the sequence 

0 . We must check the following two conditions: 

a) In the set \W  there exist elements such that 0u)(W  \  In 

constructing  , this condition is replaced by 0u)(W  \ ; 

b) the element )i(0  is defined for the sequence 0 . By assumption an 

element )i(0  to be defined for a sequence 0  if the sequence 0  has 

an element with an ordinal number i . Otherwise the element )i(0  is 

not defined. There can be four cases of fulfillment or no fulfillment of 

these conditions. In two cases, when the first condition is satisfied, irre-

spective of whether or not the second condition holds, the sequence 0  

will be extended. This means that the set of elements   in \W  

specified by the first condition is ordered in the form of sequence  . 

The sequence 0  is extended in accordance with the formula 

 ,00 . In case when the first condition is not satisfied, whereas 

the second condition is satisfied, we shall fix the element )i(0  and at 

the same time extend the sequence  , i.e., )i(, 0 , and pro-

ceed to new recursion stage. In case neither the first nor the second con-
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dition holds, the sequence 0  will not be extended nor the last fixed ele-

ment in the sequence 0  will be the element )1i(0  . Suppose that we 

have fixed all the elements of the sequence j . By that time we have 

constructed a sequence  . Let us consider the set \W  and the cre-

dential system  \W . We shall find an element in  \W  on 

which the minimum is reached in the credential system  \W . The 

obtained element is denoted by 1 j . We obtain   the element  1 j  

from  the  )W(F)(Wmax)(W W1 j  





 \\\ \   condi‐

tion:. Thus, )W(F)(W 1 j  

 \\ . Let us write 

)(Wu 1 j1 j 



  \ , and for the set  \W1 j ; then we supple-

ment the sequence   by the element 1 j , i.e., 1 j,  . In the 

same way as during the zero step, we select a subset of elements   from 

\W  such that 1  ju)(W 
  \ . Here we select for   a set 

of elements   such that 1 ju)(W 

  \ . The selected set can be or-

dered in any manner. The ordered set is denoted by  . The set 1 j  is 

assumed to be equal to  . 

c) By analogy with previous b) the recursion step will be described as a re-

cursion routine. At this stage we also use the rule of extension of the se-

quences   and 1 j . Suppose that we have fixed all elements of 1 j  up 

to )1i(j   inclusive. Then the sequence   will have the form 

)1i(),...,1(,, jj1 j   , where   denotes the sequence   ob-

tained at the instant of fixing all the elements of j , or, to rephrase, the 

sequence   prior to the )1j(  -th step. The last equation corresponds 

to the symbolic operation of extension of the sequence 

)1i(),...,1(,, jj1 j    in the case that   inside the brackets 

denotes the sequence 1 j,  . Let us consider an element )1i(1 j    

of the sequence 1 j . At the instant of fixing the element )1i(1 j    we 

decide about a further extension or about stopping the extension of the 

sequence 1 j . For this purpose we consider the credential system 

 \W  and we check two conditions: 
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1) The set \W  contains elements   such that 

1 ju)(W 

  \  For constructing   we must take elements  

  such that 1 ju)(W 

  \ ; 

2) the element )i(1 j  is defined for the sequence 1j . 

 By analogy with the step Z, we find that the sequence 1j  is extended in 

two cases in which the first condition is satisfied irrespective of whether 
or not the second condition holds. The set of elements   in \W  

specified by the first condition is ordered in the form of a sequence . 

The sequence 1 j  is extended in accordance with the formula 

  ,1 j1 j . In the case that the first condition does not hold, 

whereas the second condition is satisfied, the element )i(1 j  will be 

fixed and at the same time we extend the sequence  , i.e., 

)i(, 1 j , and after that we proceed again in accordance with 

the rules of Stage 2 of the recursion routine of extension of the sequence 

1 j . In the case that neither the first, nor the second condition holds, the 

sequence 1 j  will not be extended, and the last fixed  

element of the sequence 1 j  will be the element )1i(1 j   . At some 

step p  the sequence   will exhaust the entire set of elements W . 

Theorem 1. A sequence   constructed on the basis of a collection of  

credential system  WH  H   is a defining sequence  , whereas a  

sequence   constructed on the basis of  WH  H   is a defining  

sequence  . 

The first part of the theorem (for  ) is proved in Appendix 1. The second 

part (for  ) can be proved in the same way. 

NB1. Let us note that a sequence   constructed by KSR rules has somewhat 

stronger properties than required in obtaining a defining sequence. More  
precisely, there does not exist a proper subset L  for 1p,...,1,0j   such that 

1 jj L   and )L(F)(F j   . This is not required for obtaining a defin-

ing sequence   (  ). The corresponding proof is not given here.  
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NB2. Let us note another circumstance. With the aid of the kernel-searching 

routine it is possible to effectively find (without scanning) the largest kernel, 

i.e., a definable set. It is not possible to find an individual kernel strictly in-

cluded in a definable set (if the latter exists) by constructing a defining se-

quence. 

3. DUALITY THEOREM 

Let us establish a relationship between the defining sequences   and   of a 

system W . 

Theorem 2. Let   and   be defining sequences of the set W  with  

respect to the collection of credential system  WH  H  , 

 WH  H   respectively. Let j  be the subsequence of the sequence 


   )p,...,1,0j(   needed in the determination of  , and let j  be the 

corresponding subsequence of the sequence 


   )q,...,1,0j(  .  

Hence if for an m  and a n  we have 

 )(F)(F mn







  , (1) 

 then 



  1nm W\ , 



  1mn W\ . If 

 )(F)(F mn







  2, (2) 

 then   nm W\ ,   mn W\ . 

This theorem is important from two points of view. Firstly, under the condi-

tions (1) and (2) there exists a relationship between an   sequence and  . 

This relationship consists in the fact that elements of   which are at the  

“beginning” and form either the set 

 1 nW\  or the set nW\  will include all 

the elements of the set m  that are at the “end” of  . The same applies also to 

sets 

 1 mW\  or mW\  which are at the beginning of  , since they include 

in a similar way the set n . In other words, the theorem states that the se-

quence   does not differ “very much” (under certain conditions) from the 

sequence, which is the inverse to  . 

                                                           
2  In the following, the  and  sign will not be used twice in notation. This rule 

applies also to Appendices 1 and 2 
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Let us note that the conditions (1) and (2) are sufficient conditions, and it 

can happen that actual monotonic systems satisfying these conditions do not 

exist. Nevertheless, in the third part of this article, we shall describe actual 

examples of such systems. 

4. KERNEL SEARCH ROUTINE BASED ON DUALITY THEOREM 

We just noted that a defining sequence   differs “slightly” from the inverse 

sequence of  . For elucidating the possibility of a search for kernels on the 

basis of the duality theorem, let us rephrase the latter. This assertion can be 
formulated as follows: at the beginning of the sequence   we often encounter 

elements of the sequence  , which are at the end of the latter. 

Such an interpretation of the duality theorem yields an efficient routine of 

dual search for ⊕ and ⊖ kernels of the system W . This is due to the fact if the 

elements are often encountered, there exists a higher possibility of finding a ⊕ 
kernel at the beginning of the sequence   as compared to finding it at the end 

of  ; the same applies also to a ⊖ kernel in the sequence  . 

The routine under construction is based on Corollaries I-IV of the duality 

theorem presented in Appendix II, where we also prove this theorem. 

The routine of dual search for kernels described below is an application of 
two constructive routines, i.e., a KSR for constructing   and a KSR for con-

structing  . The routine is stepwise, with two constructing stages realized at 

each step, i.e., a stage in which the KSR is used for constructing   with ⊕ 

operations, and a stage in which the same routine is used for constructing   

with the aid of ⊖ operations on the elements of the system. 

Z. At first we store two numbers: )W(Fu0 

   and 0u0 
 . After that we 

perform precisely Stage 1 and 2 of the zero step of the KSR used for con-
structing the defining sequence  . This signifies that the set W  contains 

an element 0  such that )W(F)(Wmax)(W W0 





  . The 

threshold 

0u  is equal to )(W 0 , etc. By using the constructions of the 

zero step of KSR at the previous stage of the dual routine under construc-
tion, we obtained a set W1  . Then we examine the set 1W\  and the 

credential system   1W\ . On the set   with the credential system 


  j1 j  we perform a complete kernel-searching routine for the purpose 
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of constructing a defining sequence of ⊕ operations only for the set 


 1 jW\ . As a result, we obtain in the set 1W\  a subset F  on which the 

function F  reaches a global maximum among all the subsets of the set 
1W\ . 

R. By applying the previous )1j(   steps to the j -th step, we obtained a 

sequence of sets   j10 ,...,, , and according to the construction of a 

defining sequence we have   j10 ...  and W0  . At 

first we store two numbers: )(Fu jj





   and )H(Fu j

j 

  . By anal-

ogy, we perform the same construction consisting of two stages of a 
KSR recursion step for constructing   with the aid of ⊕ operations. 

At a given instant of such dual construction we obtained a set 


  j1 j . Then we consider the set 

 1 jW\  and the credential sys-

tem 



  1 jW\ . In the same way as at the zero step, we perform on 

the set 

 1jW\  a complete kernel-searching routine with the purpose 

of constructing a sequence   only on the set 

 1 jW\ . As a result we 

obtain in the set 

 1 jW\  a subset 1 jH   on which the function F  

reaches a global maximum among all subsets of the set 

 1 jW\ .  

S. Before starting the construction of the j -th step of the routine under 

construction, we check the condition of a Rule of Termination of Con-
struction Routine: 

   jj uu . (3) 

If (3) is satisfied as a strict inequality, the construction will terminate before the 

j -th step. If (3) is an equality, the construction will terminate after the j -th 

step. 

5. DEFINABLE SETS OF DUAL KERNEL-SEARCH ROUTINE 

At the end of the construction process, the above routine yields a set jH  or a 
set 1 jH  . It can be asserted that one of the sets is definable set or the largest 
kernel of the system W  with respect to a collection of credential system 

 WH  H  . 

The assertion is based on the following. Firstly, by applying the KSR we 
obtained the second stage of the j -th step of a dual routine the maximal set 

1jH   among all the subsets of the set 

 1 jW\  on which the function F  

reaches a global maximum in the system of sets of all the subsets of the set 


 1 jW\ . Secondly, by virtue of Corollary 1 of the Theorem 2 (the duality 
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theorem), it follows that, prior to the j -th step and provided that (3) is a strict 

inequality, the largest kernel (a definable set) will be contained in the set 
jW\ , or it follows from the Corollary 2 of the Theorem 2, if (3) is a equal-

ity, that the largest kernel is included in the set 

 1 jW\ . 

Thus by comparing these two remarks we can see that either 
jH  or 

1 jH 
 

is a definable set. 

By virtue of Corollaries 3 and 4 of the duality theorem, it is possible to find 

by similar dual routine also the largest kernel K ⊕- definable set. This asser-

tion can be proved in the same way as the assertion about 
jH  and 

1 jH 
; there-

fore this proof is not given here. 

APPENDIX 1 

Proof of Theorem 1. We shell prove that a sequence   constructed by the 

KSR rules is a defining sequence for a collection of credential systems  

  WH  H  . 

First of all let us recall the definition of a defining sequence of elements of 

the system W . We shall use the notation 1k10 H,...,H,H   , where 

WH0  , ii1 i HH  \  )2k,...,1,0i(  . A sequence of elements of a set 

W  is said to be defining with respect to a coalition of credential system 

 WH  H   if the sequence    has a subsequence of sets 

p10 ,...,,  , such that 

a) The credential )(H ii   of any element i  of the sequence   that 

belongs to the set j , but does not belong to the set 1 j , is strictly 

smaller than the credential of an element with minimal credential 
with respect to the set 1 j , i.e., )(F)(H 1 jii 

  , 

1p,...,1,0j   3; 

b) the set p  does not have a proper subset L  such that the strict ine-

quality )L(F)(F p    is satisfied (the “” symbol has been omit-

ted; see previous footnote). 

                                                           
3  In the definition of   sequence it is required that the following strict inequality be 

satisfied: )(F)(H 1 jii 

  , 1q,...,1,0j   



Monotonic Systems, II 277 

We shall consider a sequence of sets    and take the subsequence   in 

the form of the sets j  )p,...,1,0j(   constructed by the KSR rules. We have 

to prove that sets j  have the required properties of a defining sequence. As-

suming the contrary carries out the proof.  

Let us assume that Mullat property (1971) of a defining sequence is not sat-

isfied. This means that for any set j  there exists in the sequence of elements 

 ),...,2(),1( jjj   

an element )r(j  such that 

 1 j1 jjrv u)(F))r((H 

   (A.1) 

Here v  is the index number of the element j  selected in Stage 1 of the 

recursion step of the constructive routine of determination of  ; in the vocabu-

lary of notation used in Mullat (1976) we have )(iv j . 

According to the method of construction, the sequence j  consists of  

sequences   formed at the second stage of the j -th step of the constructive 

routine. Let M  be a set in a sequence of sets    such that the first element 

)M(i  of the set M  in the constructed sequence   is used at the second 

stage of the j -th step for constructing the sequence   to which the element 

)r(j  belongs. This definition of M  shows that MH rv  . 

From the construction of the second stage of the j -th step and the principal 

property of monotonicity of ⊖ operations in the system we obtain the inequali-

ties 

 jjjjjrv u)())r((M))r((H  



  (A.2) 

By virtue of the above method of selection of the set 1 j  from the se-

quence of sets j  and of the properties of a fixed sequence j , we obtain at 

the j -th step  

 1 j1 j1 j1jjj u)()(u 





  , (A.3) 

where 1p,...,1,0j  . 
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According to the rule of constructing of the sequence  , the function F  

reaches its value on the elements j  and 1 j . The elements j  and 1 j  

belong to the sets j  and 1 j  respectively; therefore the inequalities (A.1) – 

(A.3) are contradictory. 

Thus our assumption is not true and Mullat Property of the defining  

sequence   constructed by KSR rules has been proved. 

Let as assume that Property b) does not hold, i.e., the last p  of the  

sequence j  contains a proper subset L  such that 

 )L(F)(F p   . (A.4) 

Let the element L , and suppose that it is the element with minimal or-

dinal number in   belonging to L ; moreover, let t  denotes this number, i.e., 

)L(it  ,  t . From the definition of t  it follows that tHL  . 

Our analysis carried out above for the set rvH   we repeat below for the set 

tH . By analogy with the definition of the set M  we define a set 'M  with the 

aid of the element   and the sequence  .  

The set 'M  is equated with the set of the sequence of sets    that begins 

with an element used in the formation of a set   at the p -th step of the con-

structive routine such that  . 

By analogy with derivative of (A.2) we obtain 

 pppt u)()('M)(H   . (A.5) 

Since )(L)L(F  

 , it follows from (A.4) and (A.5) that 

)(L)(Ht   . 

We noted above that tHL  , by virtue of the monotonicity of ⊖ opera-

tions, it hence follows that 

 )(H)(L t   . 

The last two inequalities are contradictory, and hence Property b) of the de-

fining sequence is satisfied. 
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Thus we have proved that the sequence   constructed by the KSR rules is 

a defining sequence with respect to a collection of credential systems 

 WH  H  , and hence it can be denoted by  , whereas the sequence 

j  obtained by a constructive routine can be denoted by 


 . 

APPENDIX 2 

Proof of Duality Theorem. Below we shall show that 



  1nm W\ , if 

)(F)(F mn







   (we omit a twice notation of  and  symbols; a promised 

above the  and  sign will not be used twice  in notation. This rule have been 

applied also to Appendices 1 and 2. 

Let us assume that there exists an element  m  and that 

 1m , i.e., 




  1nm W\ . Hence follows that we have defined a credential )(1n  

 . 

According to the definition of the function F  we have the inequality 

)(F)( 1n1n







  . 

For a defining sequence   and for any 1q,...,1,0j   we have inequali-

ties  
 )(F)(F n1n



  . (A.6) 

Let us consider an element 
 ng  with the smallest index number in  . 

It follows from the definition of   that 

 )(F)g( 1nn





  . (A.7) 

The choice of element g  is convenient because it permits the use of Mullat 

Property of a defining sequence (see Appendix 1), i.e., in this case the set 
n  

is in the form of  ntH . Since )g()(F nn

  , we have proved (A.6). 

Since  m , it follows that we have defined a credential )(m   . We 

have the following chain of inequalities: 

 )()(W)(W)()(F nmm   . 

Let us recall that for any element   of the system W  under consideration, 

we have in a) the relation )(W)(W   . The first inequality follows 

from the definition of the function F , and the second inequality from the 
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monotonicity of ⊖ operations. The equality follows from the definition of the 

functions   and  , whereas the last inequality follows from the monotonic-

ity of ⊖ operations. 

By virtue of (A.6) and of the conditions of the theorem, we have also the 
following chain of inequalities: 

 )(F)(F)(F)( mn1n1n







  . 

By supplementing this chain by the previous chain of inequalities, we hence 
obtain )()( n1n  

 . Since 

  n1n , it follows from the monotonicity 

of ⊕ operations that )()( 1n1n  





 . The logical step used for obtaining 

the last inequality is valid, and therefore the assumption that 



  1nm W\  is 

untrue. 

In the same way we can prove the inclusion 



  1mn W\ . For this pur-

pose it suffices to change the signs of the inequalities and (whenever necessary) 
to replace the set 

 1n  by 

 1n , and m  by n . 

If condition (2) of the theorem holds, it is not necessary to use (A.6). In this 
case the proof will be similar, being based on the following chain of inequali-
ties (The proof is based on assuming the contrary, so that    nm W\ , 

i.e., there exists, as it were, an element   m  and 
 n .): 

)()(W)()(F)(F)( nmmnn   . 

The first inequality follows from the definition of )(F n
 , the second fol-

lows from Condition (2) of the theorem, and the third from the definition of 
)(F m

 . The last two relations express the properties of monotonic systems. 

Hence in this case we have under Condition (2) also 

 )()( nn   . 

This completes the proof of the theorem.  Now follows several corollaries 
of Theorem 2. 

Corollary 1. If for q,0n   the defining sequence is   there exists a sub-

set  nWH \  such that )(F)H(F n



  . Thus kernel K ⊕ will belong to the 

set nW\ . Indeed, since a definable set is also kernel, it follows that 

)(F)H(F p



  , p,...,1,0m  , and hence (in any case) if pm  , and n  is 

selected on the basis of the condition of the corollary, then )(F)(F pn

  . By 

virtue of the theorem, we therefore obtain the assertion of the corollary. 
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Corollary 2. If for 1q,...,1,0n   of a defining sequence   there exists 

a subset  nWH \  such that )(F)H(F n



  , then the kernel K ⊕ will be-

long to the set 

 1nW\ . 

The proof follows directly from Corollary 1, by virtue of (A.6). 

Corollary 3. If for p,...,1,0m   of a defining sequence   there exists a 

subset  mWH \  such that )(F)H(F m



   then the kernel K ⊖ will belong 

to the set mW\ . The proof of Corollary 3 is entirely similar to that of Corol-

lary 1. It is only necessary to change the signs of the inequalities and replace 
the set n  by m . 

Corollary 4. If for 1p,...,1,0m   of a defining sequence   there ex-

ists a subset  mWH \  such that )(F)H(F m



  , then the kernel K ⊖ will 

belong to the set 

 1mW\ . 
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